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Abstract
Grafted Genetic Algorithm and the Traveling Visitor Problem

In this PhD Thesis, two related topics from theoretical computer science are con-
sidered. The first one considers Grafted Genetic Algorithms. The thesis analyzes
separate, combined and partial performance of local searcher and genetic algorithm.
On the Traveling Salesman Problem we examine the impact of hybridization a 2-opt
heuristic based local searcher into the genetic algorithm. Genetic algorithm provides
a diversification, while 2-opt improves intensification. Results on examples from
TSPLIB show that this method combines good qualities from both methods applied
and outperform each individual method. In tests we applied hybridization at various
percentages of genetic algorithm iterations. On one side the less frequent application
of hybridization decreased the average running time of the algorithm from 14.62 sec
to 2.78 sec at 100% and 10% hybridization respectively, while on the other side the
quality of solution on average deteriorated only from 0.21% till 1.40% worse than
the optimal solution. We also studied at which iterations of the genetic algorithm to
apply the hybridization. We applied it at random iterations, at the initial iterations,
and the ending ones where the later proved to be the best.

The second topic considers the Traveling Visitor Problem. We consider the prob-
lem where visitors start from a hotel with desire to visit all interesting sites in a city
exactly once and to come back to the hotel. Since, the visitors use streets and pedes-
trian zones, the goal is to minimize the visitor’s traveling distance. This problem is
similar to the Traveling Salesman Problem. The difference is that during visit, travel-
ing visitors cannot fly over buildings in the city. Instead, they have to go around these
obstacles. That means that all shortest distances, like those in Euclidean Traveling
Salesman Problem, are not valid in this case. The tested benchmarks used come from
three real instances made using tourist maps of cities of Venice, Belgrade and Koper
and two modified instances from TSPLIB. We introduced and compared two methods
for solving the Traveling Visitor Problem. In all tested cases, the Koper Algorithm
outperforms the Naïve Algorithm for solving the Traveling Visitor Problem - quality
of solutions differs from 6.52% to 354.46%.

ACM Computing Classification System: F.2.1, G.1.2, G.1.6, G.2.2, G.2.3.

Key words: Traveling Salesman Problem, Genetic Algorithms, Memetic Algo-
rithms, Grafted Genetic Algorithms, Traveling Visitor Problem, Koper Algorithm,
Naïve Algorithm.
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Izvleček
Cepljeni genetski algoritmi in problem potujočega obiskovalca

V doktorski disertaciji sta obravnavani dve med seboj povezani temi s področja
teoretičnega računalništva.

Tretje poglavje vključuje obravnavo cepljenih genetskih algoritmov. Znotraj dise-
rtacije je analizirana skupna in delna izvedba lokalnega iskalca ter genetskega algo-
ritma. Na problemu trgovskega potnika (angl. Traveling Salesman Problem), smo
preučevali vpliv hibridizacije 2-opt hevrističnega lokalnega iskalca v genetski algo-
ritem. Zadnji zagotavlja raznolikost (angl. diversification) , medtem ko 2-opt izboljša
krepitev (angl. intensification). Rezultati primerov iz TSPLIB kažejo na to, da
metoda združuje dobre lastnosti obeh metod in prekaša vsako posamezno metodo. V
testih smo uporabili hibridizacijo pri različnih odstotkih genetskih iteracij algoritma.
Z manjšanjem odstotka hibridizacije se zmanjšuje povprečni čas izvedbe algoritma, ki
znaša 14,62 s pri 100 % hibridizaciji, in le 2,78 s pri 10 % hibridizaciji. Po drugi
strani pa se kakovost rešitve pri enakih odstotkih hibridizacije poslabša samo iz 0,21
% na 1,40 % odmika od optimalne rešitve. Prav tako smo preizkušali, katere iteracije
genetskega algoritma je treba hibridizirati. Hibridizacijo smo izvedli pri naključnih,
začetnih in končnih iteracijah, za katere se je kasneje izkazalo, da so najboljše.

V četrtem poglavju je obravnavan problem potujočega obiskovalca (angl. Traveling
Visitor Problem). Težava nastane, ko si obiskovalec želi ogledati vse zanimive lokacije
v mestu natanko enkrat in se po ogledu vrniti v hotel. Cilj je skrajšati dolžino spre-
hoda potujočega obiskovalca. Predstavljani problem je izpeljan iz problema trgovskega
potnika, pri čemer velja pravilo, da obiskovalec izbira samo med potmi, ki jih je možno
prehoditi. To pomeni, da so najkrajše razdalje, kot jih poznamo v problemu trgovskega
potnika, v našem primeru napačne. Za testiranje smo uporabili primere problema
potujočega obiskovalca, ki smo jih izdelali na osnovi uradnih turističnih zemljevidov
treh mest, Kopra, Beograda in Benetk. V knjižnici, TSPLIB, smo izbrali, spremenili
in testirali primera problema simetričnega trgovskega potnika. Pri reševanju prob-
lema potujočega obiskovalca smo primerjali dve predlagani metodi. V vseh testiranih
primerih problema algoritem koper prekaša naivni algoritem za reševanje problema
potujočega obiskovalca - razlika v kakovosti rešitve znaša od 6,52 % do 354,46 %.

ACM Computing Classification System: F.2.1, G.1.2, G.1.6, G.2.2, G.2.3.

Ključne besede: problem trgovskega obiskovalca, genetski algoritmi, memetični
algoritmi, cepljeni genetski algoritmi, problem potujočega obiskovalca, algoritem
koper, naivni algoritem.
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Chapter 1

Introduction

I arrived to Koper, from Belgrade, on postgraduate studies of computer science,
in 2007. Immediately, I had an urge to acquaint myself with the city in which I was
to live for the next four years. I was drawn by the city center with its numerous sites
- exactly 55 of them were listed in the official tourist map of Koper. Since doctoral
studies were exhausting, I did not have much spare time to roam the streets of Koper.
So I began to wonder whether I could devise a way of optimizing the tour through
the city, by visiting all sites in as few steps as possible. We named the problem the
Traveling Visitor Problem (TVP).

1.1 Traveling Visitor Problem

The Traveling Visitor Problem is a version of the Traveling Salesman Problem,
(TSP) [5, 54, 59, 62, 65, 68, 74, 91, 98], with a difference that the traveling visitors,
during their visit of sites, can not fly over the buildings in the city, instead visitors
must go around these obstacles. This difference is demonstrated in Figure 1.1. This
means that direct edge connections, as we know them in the TSP, are in this case
impossible (direct edge from u to v in Figure 1.1). Visitors use the walking paths
and pedestrian zones of variable length. These limits determine the weight of edges
connecting the vertices in the graph.

Formally, the Traveling Visitor Problem is stated as: given a connected, weighted

 a

uv

 b

Figure 1.1: TSP and TVP
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graph G = (V,E, c), with a set of vertices V = S ∪X and S ∩X = ∅, S belongs to
interesting sites in a city, X belongs to crossroads in a city , a set of edges E, and a
cost of traveling c. The goal is to find the shortest closed walk through all vertices
of S, according to c in graph G, although we may walk through vertices from X.

Chapter 2 introduces the basic concepts of the Traveling Salesman Problem and
related problems. Furthermore, the algorithms for solving it are described. This
chapter, provides the knowledge necessary for further chapters of the dissertation to
become understandable to the broad range of readers. Furthermore, it presents an
interpretation of the various textbooks which represents the contemporary literature
on related areas of computer science.

1.2 Traveling Salesman Problem

In the early 30’s of the 20th century, the Austrian mathematician Karl Menger
challenged the research community of that time to consider, from the mathematical
point of view, the following problem: A traveling salesman has to visit exactly once
each one of a list of n cities and then return to the home city. He knows the cost of
traveling from any city i to any other city j. Thus, the question is, which is the tour
of least possible cost the salesman can take [99].

The instance of the TSP is formally defined on the complete graph G, with the
set of vertices V = {v1, v2, ..., vn}, for some integer n and by a cost function assigning
a cost ci,j to the edge (vi, vj) for any i and j in G.

TSP can be viewed also as a permutation problem. Let Pn be a set of all permuta-
tions of the set {1, 2, ..., n}. Then the traveling salesman goal is to find a permutation
π = (π(1), π(2), ..., π(n)) in Pn, that minimizes the quantity

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (1.1)

This quantity is referred to as the tour length since it is the length of the tour a sales-
man would make when visiting the cities in the order specified by the permutation
π, returning at the end to the initial city.

TSP is one of the most important representatives of a large class of problems
known as combinatorial optimization problems [66]. Since the TSP belongs to a
class of NP-hard problems [75], an efficient algorithm for TSP probably does not
exist. More accurately, such an algorithm exists if and only if the two computational
classes P and NP coincide. From a practical point of view, it means that in general
it is quite impossible to find an exact solution for any TSP instance with n nodes,
that has a behaviour considerably better than the algorithm which computes all of
the (n− 1)! possible distinct tours, and then returns the least costly one.

If we are looking for applications, a different approach can be used. Given a TSP
instance with n nodes, any tour passing once through all cities is a feasible solution.
Algorithms that construct in polynomial time with respect to n feasible solutions are
called heuristics [12,120]. In general, these algorithms produce solutions but without
any insights to how far is their cost from the optimal.
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There exist two versions of TSP: the Symmetric and the Asymmetric TSP. In the
symmetric form, known as the STSP [72,73,92,96], the cost distance between nodes
i and j is equal to the cost distance between nodes j and i (cij = cji). In the case
of asymmetric TSP (ATSP) [14, 16, 18, 23], there is no such symmetry. In addition,
there are many different variations of TSP which are described and explored in the
literature and also a variations derived from everyday life. From the dissertation
point of view, the most important applications of the TSP studied in the literature,
are in more details presented in Chapter 2.

First steps in solving the TSP consist of exact methods and heuristics. Exact
methods like cutting planes [114] and branch and bound [26, 114], can optimally
solve relatively small problems (depending on the size of n), while methods such
as different variants of Lin-Kernighan algorithm [6, 45, 69, 78], and Concorde algo-
rithm [3–5] are good for larger problems. Furthermore, some algorithms based on
greedy principles such as nearest neighbour [62], and spanning tree [68] can be also
used for solving the TSP. The above-mentioned methods for solving TSP result in
exponential computational complexities. For that reason a new methods are required
to overcome this shortcoming. These new methods include different kinds of heuristic
techniques, nature based optimization algorithms, etc. Various creatures and natural
systems, developed in nature, are interesting and valuable sources of inspiration for
exploring and creating new methods for solving the TSP and variations of TSP. Let
us count the most important of them. Evolutionary Algorithms [100, 105, 126, 135],
Genetic Algorithms [42,50, 51, 102,108,116,125,129,133, 134,138,139], Memetic Al-
gorithms [61,86–88,103,112], Simulated Annealing [83], Ant Systems [38] and finally
Grafted Genetic Algorithms [34], [37], [35], [36]. The latter is a type of hybrid ge-
netic algorithms [42,67,93,138] and they will be described and demonstrated in the
thesis. The first topic of the thesis, presented in Chapter 3, deals with the heuristic
method called the Grafted Genetic Algorithm, through which we solve the Traveling
Salesman Problem. In this chapter the aim is to show the quality of the solution and
the running time of the grafted genetic algorithm when it is applied to the instances
of the problems of symmetric TSP which are available on the Internet.

The second topic of the thesis, presented in Chapter 4, elaborates the Traveling
Visitor Problem. This chapter describes a problem and examples of real cities and
finally solves the instances of the problem by using new methods.

1.3 Research Objectives

Research objective of the thesis is to prove the following hypotheses:

• Hypothesis 1: The method for solving of TSP that is made of two indepen-
dent methods, genetic algorithm and 2-opt heuristic, outperforms each of the
combined methods in terms of the quality of solution.

• Hypothesis 2: The quality of solution of a proposed method to the problem
of a traveling visitor problem, outperforms algorithms for solving general TSP
problem, when they are used for solving traveling visitor problem.



Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 4

Proofs of hypothesis 1 and the hypothesis 2 are in the Chapter 3 and Chapter 4,
respectively.

Contributions to the science consist of the following results:

• Construction of the grafted genetic algorithm for solving the traveling salesman
problem.

• Verification that the traveling salesman problem can be successfully solved
using the grafted genetic algorithm.

• Construction of the method for solving the traveling visitor problem.

• Construction of the solutions of the traveling visitor problem for cities of Koper,
Belgrade and Venice.

• Verification that all instances of the traveling visitor problem, which are solved
using the proposed method, represent a very satisfactory solution.

The results of the thesis represents the contribution to bridging the gap between
theoretical computer science and its application in practice. Also to better under-
standing and modeling of real problems in the economy, represented as the NP-hard
problems from graph theory as well as a contribution to the optimization methods
for solving these problems.

The results of this PhD Thesis are published in the following articles:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the 17th International Electrotechnical and Computer
Science Conference, Portoroz, Slovenia (2008), 115–118.

• M. Djordjevic, M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt Algo-
rithm Based Local Searcher Into the Genetic Algorithm, Proceedings of the 9th
WSEAS international conference on Applied informatics and communications,
AIC 2009, Moscow, Russia (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstract
of International Conference on Operations Research, OR 2011, Zurich, Switzer-
land (2011), 130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011, Dubrovnik, Croatia (2011), 515–520.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and the Koper Algorithm for Solving It, Book of Abstracts of 25th Conference
of European Chapter on Combinatorial Optimization, ECCO 2012, Antalya,
Turkey (2012), 10.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and Algorithms for Solving It, Book of Abstracts of 3rd Student Conference on
Operational Research, SCOR 2012, Nottingham, UK (2012), 26.
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• M. Djordjevic, J. Zibert, M. Grgurovic, and A. Brodnik Methods for Solving
the Traveling Visitor Problem, Proceedings of the 1st International Internet
and Business Conference, IBC 2012, Rovinj, Croatia (2012), 174–179.

• M. Djordjevic, M. Grgurovic, and A. Brodnik, Performance Analysis of Par-
tial Use of Local Optimization Operator on Genetic Algorithm for Traveling
Salesman Problem, Business Systems Research, Print ISSN 1847-8344; Online
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Chapter 2

Background

2.1 Traveling Salesman Problem

In this chapter we introduce the basic concepts of optimization and related com-
binatorial problems. Among those problems, probably best known is the Traveling
Salesman Problem (TSP) [5,54,59,62,63,65,68,74,91,98], which we describe in this
section in more detail. We illustrate the computational properties of the TSP which
is closely related to many optimization problems arising in real world applications.
We refine some graph theoretical approaches, which can be applied when attempting
to tackle traveling salesman like problems. TSP can be stated as follows. Including
his home town, a salesman wants to visit n cities and then return home. The ob-
jective is to find a tour for visiting each city exactly once while minimising the total
distance traveled. The problem of finding a minimal tour is equivalent to finding an
optimal ordering of the set of cities. The TSP is consequently often formulated as
a permutation problem. Given a set of n cities {c1, c2, ..., cn} and for each pair of
cities (ci, cj) a distance d(ci, cj). The goal is then to find a permutation π of the
cities which minimises the length of the tour given by:

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (2.1)

As mentioned before, the TSP has attracted the focus of researchers for decades.
According to a survey on the history of combinatorial optimization by [123], the TSP
was formulated as early as 1832 in a German manual for the successful traveling
salesman, before it was presented as a research problem by Menger in the 1930’s.
Since then, the TSPs simplicity on the one hand and the difliculty of finding optimal
solutions on the other, has affirmed it as a test bed for new heuristics and exact
algorithms. But, the problem has not only teoretical foundations and there are
many real life applications of the TSP and its variants [77, 113], some of which we
will describe later in this chapter. Let us now introduce the TSP in mathematical
terms as an integer programming problem. Take up variables xi,j which are either
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equivalent to one if the city j is straightly visited after city i or zero otherwise. The
TSP may be established as an integer program [82] as follows:

Minimise
n
∑

i=1

n
∑

j=1

d(ci, cj)xi,j,

Subject to
n
∑

i=1

xi,j = 1,∀j = 1, 2, ..., n,

n
∑

j=1

xi,j = 1,∀i = 1, 2, ..., n,

∑

i∈I

∑

j /∈I

xi,j ≥ 1, I ⊂ {1, 2, ..., n} with 1 < |I| < n,

and xi,j ∈ {0, 1} ,∀i, j = 1, 2, ..., n,

(2.2)

Here, our goal is to give the sum of all combination variables xi,j weighted by the
lengths between the cities. This function is subject to a number of constraints. The
constraints stated first and second inflict each city to be visited exactly once as a
part of the tour. The constraints denoted third are the so called sub-tour avoidance
constraints which are needed to guarantee that the solution represents a connected
tour. The presentation of the TSP as an integer program shown above is not unique;
there are various representations, see for example [111]. In the next subsections we
will present some important notions for optimization problems and the TSP, together
with a review of problems similar to the TSP.

2.1.1 Graph representation of the TSP

TSP is ordinarily represented and considered as a graph theoretical problem [77,
82]. This representation is suitable because many algorithms for the TSP are es-
tablished on graph theoretical concepts. Here, we present some graph theoretical
definitions needed to represent the TSP in graph theoretical terms.

An undirected graph G = (V,E) consists of a finite set of vertices (or nodes)
V and a finite set of edges E. Each edge e ∈ E correspond to a set e = {u, v}
of two vertices u, v ∈ V . An edge e = {u, v} is incident to vertices u and v
and the number of edges incident to a vertex is the degree of the vertex. In the
situation where there exists an edge e = {u, v} between each pair u, v ∈ V we
speak of a complete graph. Now, some concepts of the TSP will be presented. If
P = ({u1, u2} , {u2, u3} , ..., {uk−1, uk}), where {ui, ui+1} ∈ E, then P is called a
walk. If further ui 6= uj for all i 6= j it is called a path. A closed path, where
P = ({u1, u2} , {u2, u3} , ..., {uk, u1}), i.e. a path as well as the edge returning to the
vertex it started from, is denoted to as a cycle. Graphs are generally categorised
according to their properties. Two important classes, for the TSP are the Eulerian
and the Hamiltonian graphs. A graph is called Eulerian if it contains an Eulerian
Tour, which is a closed walk traversing every edge of the E in graph G. A graph is
called Hamiltonian if there exists a cycle which visit every vertex from V in graph
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G. Those cycles are called Hamiltonian Cycles. It is worthy to measure the qualities
of a walk, path or tour in comparison to others. Furthermore, weights are associated
with each edge of the graph. For such a graph we say a weighted graph. Because a
walk, path and tour can be identified by the set of edges traversed, P , its quality can
be valuated by a weight or cost function c : P −→ Q, which will map the edge set
P into the set of the rational numbers Q. Let ci,j refer to the weight of edge {i, j},
then the weight of an edge set P is then specified as the sum over all the edges of P :

∑

{i,j}∈P

ci,j. (2.3)

For a tour or a path the sum of weights of its edges is commonly specified to as
its length. Let us now determine the symmetric TSP (STSP) [72, 73, 92, 96]. In the
STSP the distance between nodes i and j is equal to the distance between nodes j
and i. An instance of a TSP can be seen as a complete graph G = (V,E) where the
set of vertices V is given by the cities and edges in the graph with corresponding
edge weights ci,j are given by the distances between cities. The TSP is then equal
to the problem of finding a Hamiltonian Tour of minimal length in the graph G.
For many applications it is useful to correlate a direction of the edges of a graph.
Because the weights between vertices are not necessary symmetric, i.e. ci,j 6= cj,i,
for some edges of G. This kind of graph is called directed graph or digraph and its
edges are ordered 2-tuples of vertices, referred to as arcs. The asymmetric TSP
(ATSP) [14, 16, 18, 23] is then similar to the symmetric TSP above, i.e. it is the
problem of finding a Hamiltonian Tour of minimal length in a complete digraph
which also take the directions of the edges into account. The Euclidean TSP, or
planar TSP, is the TSP with the distance being the ordinary Euclidean distance.
The Euclidean TSP [56,112] is then a particular case of metric TSPs, since distances
in a plane obey the triangle inequality.

2.1.2 Computational complexity of the TSP

As was mentioned at the start of this section the TSP is a very hard combinatorial
optimization problem. In order to evaluate algorithms according to their computa-
tional requirements the theory of Computational Complexity has been developed. In
plain terms, the computational complexity deals with the number of computational
steps an algorithm needs to solve an instance of a problem of size n. An algorithm
can be described as a "step-by-step procedure" [75]. The number of computational
steps realized present a measure of the execution time needed to solve an instance of
a problem. The number of steps an algorithm requires, is often not only dependent
on the size of the problem instance. It may also differ between instances of the same
size. Furthermore, it is not always straightforward to estimate the number of steps
an algorithm needs for a given instance. To be able to analyse the complexity of
an algorithm, a worst-case analysis is introduced. The computational complexity is
defined as the maximum number of steps an algorithm may require for any instance
of a given size.

To recap, the performance of an algorithm is measured as the maximum num-
ber of steps it requires for any problem instance of size n denoted as a function of
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n. Widely adopted concept is that an algorithm is effective if its worst-case com-
plexity is bounded by a polynomial function of instance size n while algorithms of
exponential time complexity are commonly considered ineffective or computationally
expensive [75]. Even though an exponential function may initially give smaller values
than a given polynomial, there will be always a constant N such that for all n ≥ N
the polynomial function get lesser values than the exponential.

The Classes P and NP

The outline summarized in previous section can be used to categorize an algo-
rithm as efficient or not dependent upon whether it has polynomial time complexity.
Similarly a problem is considered easy or hard depending whether there exists a
polynomial time algorithm for solving it. Furthermore, it means thata a problem
is considered easy if there is an algorithm where in the worst case the number of
steps of the problem of size n is bounded by a polynomial of n. The main purpose
to investigate the computational complexity of decision problems is that there ex-
ist efficient methods for concerning the complexities of different decision problems.
Decision Problems consist of an instance of a problem and a question to which the
answer is ’yes’ or ’no’. An example of a decision problem related to the TSP is the
Hamiltonian Cycle Problem [75]:

Problem 2.1.1 Instance: Graph G = (V,E) Question: Does there exist a cycle in
G passing through each vertex in V exactly once?

As we described above, looking from the graph theoretical point of view, the
TSP is equivalent to finding a Hamiltonian cycle of a minimum length in a complete
graph G. As a consequence, for the TSP decision problem the main question is not
whether a cycle exists in a complete graph G, but if there exists a cycle of length less
than a given constant B. The TSP Decision Problem can be stated as follows [75]:

Problem 2.1.2 Instance: Given a complete weighted graph G = (V,E) with non-
negative edge weights ωi, for i ∈ E and a constant B ≥ 0 Question: Does there exist
a Hamiltonian cycle in G (or a Tour of a Traveling Salesman) with edge sequence S
where

∑

i∈S wi ≤ B ?

It is easy to see that if there exists a polynomial time algorithm for the TSP,
there also exists a polynomial time algorithm for the TSP Decision Problem. On the
other hand, it is not so evident and even not always true that the converse holds as
well. A polynomial time algorithm for generating the optimal TSP tours by calling
a subroutine that solves the TSP Decision Problem is introduced by Johnson and
Papadimitriou in [75]. Supposing that the TSP decision problem can be solved in
polynomial time, this algorithm, provides a polynomial time algorithm for the Trav-
eling Salesman Problem. This represents a type of polynomial time reduction [32].
Additionally the presence of this algorithm proves the following theorem [75]:

Theorem 2.1.3 There exists a polynomial time algorithm for the TSP if and only
if there exists a polynomial time algorithm for the TSP Decision Problem.
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This theorem indicate that when we are interested in the computational com-
plexity it is adequate to restrain focus to the TSP Decision Problem. That’s why the
question of whether the TSP is a "hard" to solve problem is equivalent to whether
the TSP Decision Problem is a "hard" problem. Let us now introduce the two classes
of problems in the theory of computational complexity. The class P contain all de-
cision problems for which exists a polynomial time algorithm. Many combinatorial
optimization problems are not in P . Nevertheless, it is not easily shown that certain
problems are not in P even if no polynomial time algorithm is known. To specify
the second class of algorithms we must first define the concept of non-deterministic
algorithms.

Opposite to the deterministic algorithm, a non-deterministic algorithm can ex-
hibit different behaviors on different runs. The class NP are composed of all decision
problems, which can be solved in polynomial time by an non-deterministic algorithm.
It is obvious that P ⊆ NP . In spite of that, the question of whether P = NP denote
one of the major question of the computer science community. A lot of research has
been spent on this challenge over the last five to six decades and the fact that no
polynomial-time algorithm for specific problems in NP has been found, makes the
equivalence of both classes very unlikely. Because of this, it is widely assumed that
P 6= NP , even though this conjecture remains unproven to present date.

The Class NP-Complete

Very important subset of problems in NP is the class of NP−complete problems.
The most important property of NP-complete decision problems is that their compu-
tational status is directly connected to the relation between P and NP . The concept
of NP-completeness was introduced in [25]. Regrettably, concerning the TSP, it has
been shown that it belongs to the class of NP-complete problems. As Johnson and
Papadimitriou comment in [75]:

This is our main negative result for the TSP; it is the strongest neg-
ative result one can hope to prove, short of establishing P 6= NP .

In contrast to the consideration that the TSP is not NP- complete as it is not a
decision problem. Before in the chapter we have mention a polynomial time algorithm
for the TSP which directly lead to a polynomial time algorithm for the TSP Decision
Problem and also its NP-completeness imply that P = NP . Problems which have
this property are referred to as NP-hard problems.

2.1.3 Applications of the TSP

The TSP variations and the applications of the TSP exceed the route planning
problem of a traveling salesman and cross over some areas of science including com-
puter science, mathematics, operations research, genetics, engineering, and electron-
ics. In the next three subsections we summarize, from the dissertation point of view,
the most important applications of TSP studied in the literature.
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Machine Scheduling Problem

Maybe the most studied application field of the TSP is sheduling and machine
sequencing. A scheduling can be described as follows. There are n assignments
{1, 2, ..., n} to be processed consecutive on a machine. Let cij, be the setup cost
necessary for processing assignment j instantly after assignment i. When all assign-
ments are processed, the machine is reset to its original state at a cost of cj,l, where
j is the last assignment processed. Therefore the machine sequencing problem is of
finding an order in which the assignments are to be processed so that the total setup
cost is minimized. Obviously, finding a permutation π of {1, 2, ..., n} that minimizes
Equation 2.4 solves the problem:

cπ(n)π(1) +

n−1
∑

i=1

cπ(i)π(i+1) (2.4)

Looking from the practical point of view the assignments can be often clustered
together. In this case the setup time, if any, between assignment within a cluster
is relatively small compared to setup time between jobs in two different clusters.
For example this can be a typical scenario in assembly line. Assembling the similar
products need minimal setup time. However, if a different product needs to be
assembled, the setup time may grow larger because it may require the new parts,
tools etc. So the machine sequencing problem with such a specialized matrix of costs
reduces to the Clustered TSP. This problem will be, in more detail, presented latter
in desertation.

Now look at another scheduling problem - a no wait flow shop problem. There are
n assignments each demanding processing on m machines in the order 1, 2, 3, ...,m.
No assignment is approved to take a waiting time between processing on two se-
quential machines. The goal is to find an optimum sequencing of assignments which
will be processed so that the total completion time is minimal. Applications of this
kind of sequencing problems can arise in a different situations, more details can be
found at [43]. Furthemore, the no-wait flow shop problem is strongly NP-hard, but
solvable in polynomial time, when m = 2. In this particular case it reduces to the
well known Gilmore-Gomory problem [62].

Taking an instance of the no-wait flow shop problem, it is known than it can be
constructed an equivalent instance of TSP, by using the reduction proposed in [43].
So reduction rests in creation of a complete graph G on n+1 nodes, in which nodes
represent an assignment j, 1 ≤ j ≤ n and node n + 1 represents the start and the
end of processing. The cost ci,j of edge (i, j) in G represents the additional schedule
length, if assignment j is the direct successor of assignment i in the schedule. So a
minimum cost tour in G represent a schedule with minimum completition time. To
finish the reduction, the values of ci,j must be identified. Let pj,k be the processing
time of assignment j on processor k, and also 1 ≤ j ≤ n, 1 ≤ k ≤ m. Then ci,j can
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be obtained using the equations [43]:

cn+1,i =

m
∑

r=1

pir, i = 1, 2, ..., n,

cij = max1≤k≤m

{

k
∑

r=1

pir +

m
∑

r=k

pjr

}

−
m
∑

r=1

pir, 1 ≤ i, j ≤ n, i 6= j

ci,n+1 = cii = 0, i = 1, 2, ..., n.

(2.5)

These applications that we considered so far reduce a given problem to the TSP.
For details of other research works on printed circuit board assembly that are

relevant to the TSP, but goes beyond the scope of the dissertation, refer to [8, 62].

General Routing Problem

Given a connected, undirected graph G = (V,E), that consists of a finite set of
vertices V and a finite set of edges E, a cost ce for each edge e ∈ E, a finite set
VR ⊆ V of required vertices and a finite set ER ⊆ E of required edges. The General
Routing Problem (GRP) is the problem of finding a minimum cost route passing
through each v ∈ VR and each e ∈ ER at least once [110].

The GRP contains several other important routing problems as special cases:

• The Rural Postman Problem (RPP) is obtained when VR = ∅. For more details
on this problem, we refer to [110].

• The Chinese Postman Problem (CPP) is obtained when VR = ∅ and ER = E.
For more details on this particular problem, we refer to [24].

• The Steiner Graphical TSP (SGTSP) is obtained when ER = ∅. The SGTSP
has been discussed in [28]. Moreover, in [46] this problem was also called the
Road TSP (RTSP).

• The Graphical TSP (GTSP) is obtained when ER = ∅ and VR = V . For more
details we refer to [28].

Frequency Assignment Problem

If we look a communication network together with a set of transmitters, the
Frequency Assignment Problem is to specify a frequency to each transmitter from
a given set of usable frequencies. The frequencies must satisfying some interference
constraints. These constraints can be denoted by a graph G = (V,E) in which
each node denotes a transmitter. A non-negative integer weight cij is appointed for
each arc (i, j) denoting the tolerance. Take F = {0, 1, 2, ..., R} to be a collection of
usable frequencies. A frequency assignment is then to assign the number f(i) ∈ F
to node i ∈ V such that |f(i)− f(j)| > cij for all (i, j) ∈ E. In the case that such
an assignment exists then it is called a feasible assignment. Note that if R is large
enough a feasible assignment is possible. Let us consider the following, let G∗ be
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the complete graph obtained from G by adding edges of zero weight. Let c′i,j be the
weight of edge (i, j) in G∗ such that c′ij = cij + 1. Finally, let C ′(H∗) be the sum of
the weights of edges in a minimal cost Hamiltonian path in G∗. Then the TSP can
be used to compute a lower bound for the frequency assignment problem, as it has
been shown in [62].

2.1.4 Most Important Variations of the TSP Studied in the Liter-

ature

Our discussion on couple of next variations are confined to their definitions only
and practical implementations for some variations. For more comprehensive overview
on these particular problems, see the corresponding references cited. Note also that
the references we cite are not necessarily a paper in which the problem was intro-
duced. Below we summarize, from the dissertation point of view, the most important
variations of TSP studied in the literature.

The time dependent TSP: For each arc (i, j) of graph G, n of different costs
ctij, t = 1, 2, ..., n are given. The cost ctij represent the cost of traveling from city i
to city j in some time period t. The goal is to find a tour (π(1), π(2), ...π(n), (1)),
where π(1) = 1 represents the home location, which is in the time period zero, in
graph G such that

∑n
i=1 c

i
π(i)π(i+1) is minimized. The index n+1 is equivalent to 1.

When all arcs (i, j), are c1ij = c2ij = . . . = cnij then this problem reduces to the TSP.
For more details on this particular problem, we refer to [58].

Black and White TSP: The black and white TSP is a generalization of the
TSP. In this problem, the set of nodes of G is partitioned into two sets, B and
W . The elements of set B are addressed as black nodes and the elements of set
W are addressed as white nodes. For tour H in G to be feasible the following two
conditions must be satisfied. Firstly, the number of white nodes between any two
sequential black nodes should not go beyond a positive integer I. Secondly, the
distance between any two sequential black nodes should not go beyond a positive
real number R. Then, the goal of the black and white TSP is to find a minimal
cost feasible tour in graph G. It is important to note the practical implementation
of this problem. Accordingly the applications of this problem involve design of ring
networks in telecommunications [62]. Furthemore, a variation of this problem known
as TSP with replenishment arcs, has been applied in the air-line industry. The TSP
with replenishment arcs has been discussed in [97].

The delivery man problem: The delivery man problem (DMP) is also known
as the minimum latency problem [11] and the traveling repairman problem [52]. Let
H be a tour in G and v1 be a starting node. For each vertex vi of G, define the latency
of vi with respect to H expressed by Li(H), which represents the total distance in
H from v1 to vi. The goal of the delivery man problem is then to find a tour H∗ in
graph G such that

∑n
i=1 Li(H

∗) is minimized. Additionally it can be verified that
this problem is a special case of the time dependent TSP described above. For more
details on this problem, we refer to [62].

Clustered TSP: In this variation of TSP, the set of vertices of graph G is splited
into clusters V1, V2, ..., Vk. The goal of clustered TSP tries to find a minimum cost
tour H in graph G with the constraint that vertices within the same cluster must be
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visited consecutively. Note also that by adding a large cost M to the cost of each
inter-cluster edge this problem can be reduced to a TSP. More details about this
problem can be found in [64].

Generalized TSP: As in the case of clustered TSP, let V1, V2, . . . , Vk be a par-
tition of the set of vertices of graph G. In a Generalizes TSP (GTSP), the goal
is to find a shortest cycle in graph G which goes through exactly one vertex from
each cluster Vi, 1 ≤ i ≤ k. Note also that if |Vi| = 1 for all i, GTSP is the same
as TSP. The GTSP can be reduced to a TSP for arbitrary |Vi| using the reduction
described in [109]. WLOG, assuming that graph G is a digraph and the partitions
are numbered in such a way that |Vi| ≥ 2 for 1 ≤ i ≤ r and |Vi| = 1 for r+1 ≤ i ≤ k.
For any i ≤ r let Vi = {i1, i2, ..., in}. For each arc e ∈ E, allow a new cost de defined
as follows:

dij ij+1
= −M, j = 1, . . . , ni with ni + 1 ≡ 1, i = 1, ..., r. (2.6)

This guarantee that if a minimal TSP tour in graph G enters a cluster Vi through
node ij , it visits nodes of Vi in the order ij , ij+1, ..., ini

, i1, ..., ij−1 and leaves the
cluster Vi from the vertex ij−1. Now the goal is to interpret this outcome to be
equivalent to a GTSP tour entering and leaving the cluster Vi by visiting vertex
ij. To demonstrate this fact, the new cost of arcs which are going out of ij−1 must
coincide with the original cost of arcs leaving ij . In the following Equation 2.7:

dij−1p = cijp, p /∈ Vi, j = 1, 2, ..., ni with index 0 ≡ ni, i = 1, ..., r (2.7)

and duv = cuv for all other edges. From a minimal solution of the TSP on graph G
with the modified costs de for e ∈ E, a minimal solution to GTSP can be recovered.
For more details on this problem, we refer to [61, 78].

The MAX TSP: In contrast to the TSP, the objective in the MAX TSP is to
find a tour in graph G where the total cost of edges of the tour is maximum. This
problem can be solved as a TSP by just replacing each edge cost by its additive
inverse. If problem requires that the edge costs are non-negative, a large constant
could be added to each of the edge-costs. These replacing will not change the optimal
solutions of the problem. The MAX TSP has been discussed in [62].

Traveling Tourist Problem: A tourist wishes to see all monuments in a city,
and so must visit each monument or a neighbour thereof. Furthemore, it is assumed
that a monument is visible from any of its neighbours. The edges therefore represent
lines of a sight. The resulting walk will therefore visit a subset of all nodes in the
graph G. For the Traveling Tourist Problem we refer to the [94].

The bottleneck TSP: In this variation of TSP the objective is to find a tour
in graph G such that the largest cost of edges in the tour is as small as possible. A
bottleneck TSP can be described as a TSP with exponentially large edge costs. For
more details we refer to [62].

TSP with multiple visits (TSPM): In this problem the objective is to find a
routing of a traveling salesman. Salesman starts at a given vertex of graph G, visits
each vertex at least once and comes back to the starting vertex in such a way that
the total distance traveled is minimized. The TSPM can be transformed into a TSP
by replacing the edge costs with the shortest path distances in graph G. In the lack
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of negative cycles, shortest path distances between all pairs of vertices of a graph G
can be computed using efficient algorithms [1]. If graph G contains a negative cycle,
then TSPM is unbounded. More details on TSPM can be found in [62].

2.1.5 All-Pairs Shortest Paths

In this section, the problem of finding shortest paths between all pairs of vertices
of graph is considered. Given a weighted, directed graph G = (V,E) with a weight
function ω : E → R that maps edges to real valued weights. The objective
is to find, for every pair of vertices u, v ∈ V , the shortest path from u to v. In
addition the weight of a path is the sum of the weights of its edges. The all-pairs
shortest-paths problem, can be solved, by running a single-source shortest-paths
algorithm |V | times, once for each node as the source. In some particular case, where
all edge weights are nonnegative, Dijkstra‘s algorithm [27] can be used for solving
the problem. If the linear-array implementation of the min-priority queue is used,
then the running time is O(V 3 + V E) = O(V 3). Furthemore, the binary min-heap
implementation of the min-priority queue generate a running time of O(V E lg V ),
which is an improvement, if the graph is sparse. If the graph contains the negative-
weight edges, then Dijkstra‘s algorithm can not be used. Alternatively, the Bellman-
Ford algorithm can be run, once from each node. The resulting running time is
then O(V 2E), which results to O(V 4) on a dense graph. In addition, for solving
the all-pairs shortest paths problem on sparse graphs the Johnson‘s algorithm is
used. For more details see [27]. In contrast to the single-source algorithms, which
assume a distance-list representation of the graph, the Floyd-Warshall algorithm uses
a distance-matrix representation.

The Floyd-Warshall Algorithm

The Floyd-Warshall algorithm (FW) is a simple and extensively used algorithm
for computing the shortest paths between all pairs of vertices in an edge weighted
directed graph G = (V,E). The algorithm runs in O(V 3). The Floyd-Warshall
algorithm produce the correct result as long as no negative cycles exist in the in-
put graph. The FW algorithm take into consideration the intermediate nodes of a
shortest path, where an intermediate node of a simple path p = 〈v1, v2, . . . , vl〉 is any
node of p other than v1 or vl, that is, any node in the set {v2, v3, . . . , vl−1}. The
Floyd-Warshall algorithm depend on the following observation. During assumption
that the nodes of G are V = {1, 2, . . . , n}, consider a subset {1, 2, . . . , k} of nodes
for some k. For any pair of nodes i, j ∈ V , consider all paths from i to j whose
intermediate nodes are all drawn from {1, 2, . . . , k}, and let p be a minimal-weighted
path between them. The Floyd-Warshall algorithm take advantage of a relationship
between path p and shortest paths from i to j with all intermediate nodes in the set
{1, 2, . . . , k − 1}. Furthemore, this relationship depends on whether or not k is an
intermediate node of path p.

The running time of the Floyd-Warshall algorithm shown in Algorithm 1 is ap-
pointed by the triply nested for loops of lines 2-4. Furthemore, each execution of
line 5 takes O(1) time, so the algorithm runs in time O(V 3). Because of that the
Floyd-Warshall algorithm is pretty efficient for even modest sized input graphs.
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Algorithm 1 Floyd-Warshall
1: procedure Floyd-Warshall(V,W)
2: for all k ∈ V do
3: for all i ∈ V do
4: for all j ∈ V do
5: Wij := min(Wij ,Wik +Wkj)
6: end for
7: end for
8: end for
9: end procedure

2.2 Algorithms for the TSP

In this section, different algorithms that have been recommended in the litera-
ture for the TSP will be examined. This section introduces the basic concepts of
heuristic approaches for the TSP and give some of the theoretical results that have
been examined in the literature. Heuristic approaches correspond to approximation
algorithms with objective to find the near optimal solutions quickly rather than the
best solution to a given problem. The scope of the section mainly concentrates on the
classical constructive, local search approaches and by nature inspired techniques and
their extensions. For the TSP these diverse approaches represent the state-of-the-art
approaches when the objective is to find satisfactory solutions quickly. Heuristic ap-
proaches for the TSP have been presented in several surveys. For the comprehensive
overview of the heuristic tehniques, we refer to the surveys [73,77] and to a book on
the TSP and its variants [62].

2.2.1 Tour Quality

The classic measure of the quality of a tour length is the gap to the optimal
tour length. This gap is commonly demonstrated as the pass over optimum. For
algorithm A this gap can be formally shown as relative difference between obtained
length of a tour lA and optimal length of a tour lC :

lA − lC
lC

. (2.8)

Furthermore, this gap is always expressed in percents. Luckily, the standard
test beds, such as Reinelt’s TSPLIB [121], provides a wide set of instances, which
also includes the optimal tour length for most of tested instances. The optimal tour
lengths are usually unknown for instances of sizes or structure that cannot be solved
to optimality in a reasonable amount of time. Because of the lack of the optimal
tour length for instances, a different reference point is needed. Those reference points
present values, which are close to the optimal tour length. Furthemore, this reference
points are as a consequence commonly a lower bound on the optimal solution.

The Held-Karp lower bound (HKLB) [68] represents a standard lower bound for
the TSP. The HKLB on the optimal solution corresponds to the solution of a linear
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programming relaxation [22] of the standard integer programming formulation of the
TSP. This imply that the integer constraints of the integer programming problem
are substitute with bounded variables. Furthemore, the resulting linear programming
problem [131] is then solved to optimality by using an algorithm such as the simplex
method [31]. Even if the resulting linear program consist of an exponential number
of subtour constraints it can be solved in polynomial time, because there exists a
polynomial time "seperation oracle" for the subtour constraints based on calls to a
max-flow algorithm [79]. Experimental results, which is presented in [62], show that
this lower bound is very close to the optimal tour length in most cases.

2.2.2 Tour Construction Algorithms

The objective of tour construction approaches is to build a tour for an instance of
TSP from scratch. This can be achieved by constructing a tour which will follow some
construction rule. Determinations during the construction of a tour are mostly made
in a greedy fashion. The objective of these constructive methods is an immediate gain
instead of looking ahead. There are many constructive heuristics which have been
suggested for the TSP. A comprehensive overview of tour construction approaches
for the TSP can be found in [10, 122]. Furthermore, for the thorough performance
testing of the tour construction approaches for the symmetric TSP, especially for the
Euclidean TSP, see [62, 122].

The tour construction approaches described in the next two subsections were
chosen because of their suitability to symmetric, especially Euclidean instances, of
TSP. Two basic and from the dissertation point of view important tour construction
approaches are the Nearest Neighbour and the Insertion heuristics.

Nearest Neighbour Heuristic

One of the most intuitive heuristic algorithm for the TSP is the Nearest Neigh-
bour algorithm (NN). The salesman starts at an arbitrary selected node and then
sequentially move to the nearest node he has not yet visited. When all nodes have
been visited, salesman returns to the node he started from. The pseudocode of this
algorithm for a set of nodes, i.e., cities C = {c1, c2, ..., cn} is shown in Algorithm 2.

The NN algorithm has a computational complexity of O(n2) which can be reduced
to O(n log n) for geometric instances [10]. The best performance ratio noted for
the instances of TSP, which satisfy the triangle inequality is given by NN(i)

OPT (i) ≤

0.5 (blog2 nc+ 1), see [73], and therefore growing in n. Nevertheless, in another
case where the triangle inequality is not satisfied one can anticipate even worse the
performance ratio.

In the literature exists various variants of the NN approach with objective to
improve its performance. One such variant is the Double Ended Nearest Neighbour
(DENN) [122], where the tour is built from both ends of the current sequence. An-
other variant is so-called Random Nearest Neighbour (RNN), where the node, which
will be visited next is selected randomly from a set of nearest neighbours [62].
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Algorithm 2 Nearest Neighbour
1: procedure NearestNeighbour(C)
2: Select arbitary city cj , set k = j and C = {c1, ...cn} \ cj
3: while (C 6= 0) do
4: Determine cl ∈ C with d (ck, cl) = mincj∈C(d(ck, cj))
5: Add cl to the tour by connecting ck to cl and set c← C \ cl and k = l
6: end while
7: Connect ck to starting city cj
8: end procedure

Insertion Heuristic

For the insertion heuristics a different construction rule is followed. The algorithm
start with a subtour, which contains one or two cities. Then it successively add
cities to the current subtour. This adding is followed by some selection criteria. The
pseudocode of this approach is presented in Algorithm 3.

Algorithm 3 Insertion
1: procedure Insertion

2: Select a starting tour through k cities T = {c1, c2, . . . , ck}
3: repeat
4: Select a city ci with ci /∈ T following some criteria
5: Insert city ci into the current subtour T
6: until ci /∈ T, i = 1, 2, ..., n
7: end procedure

From the description of the algorithm three questions arise: From which city or
cities to start the heuristic? Which city to insert next? Where to insert the city
into the current subtour? Various decision rules have been proposed in the litera-
ture regarding the answers on these questions. The set of cities, which construct the
starting subtour is commonly selected randomly and consists of one, two or three
cities. For Euclidean problems other approaches such as starting the heuristic from
the convex hull of the problem have been also suggested [122]. The last two ques-
tions, to which city to insert next and where to insert it, are tightly related. Some
selection rules are:
1. Random Insertion: Choose the city to be inserted randomly from the set of cities
that are not yet a component of the tour,
2. Cheapest Insertion: Insert the city, which is not yet a component of the tour,
whose insertion results to the minimal grow in tour length,
3. Farthest Insertion: Insert the city, which is not yet a component of the tour,
whose minimal distance to a city, is maximal,
4. Nearest Insertion: Insert the city which is not yet component of the tour and
is nearest to any city which is at present a component of the tour. A comprehen-
sive empirical analysis of Insertion Heuristics with different insertion criteria can be
found in [122]. Nearest insertion, farthest insertion and random insertion can be im-
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plemented to run in O(n2) time. Cheapest insertion has time complexity O(n2 log n)
and is computationally more expensive.

2.2.3 Local Search Algorithms

Local search algorithms for the TSP are built on simple tour adjustments. A local
search algorithm is built from operations called moves, which are used to transform
one tour to another. The local search is actually a neighborhood search process,
where each tour has an alike neighborhood of tours. The local search algorithm
repeatedly moves to a better neighbor as far as no better neighbors exist. These
moves, which have been proposed for the TSP, can be sorted into operators of edge
exchange, node exchange and node insertion. The edge exchange operators exchange
the edges in the tour and will be described in detail in later section. The node
exchange operator work in such a way that it exchanges two nodes in the sequence.
On the other hand the node insertion operators work by deleting a node from a tour
and inserting it at another position in the tour.

A tour t∗ of the TSP example is called locally optimal, when all other tours
in its neighbourhood are at least as long as t∗. To identify a local optimum, the
neighbourhood of an initial tour is explored for a solution of better quality. When a
new best solution s′ has been found, it is accepted and its neighbourhood N(s′) is
seacrhed. Operations of this kind are repeated as far as no more improvements can
be found. A pseudocode using above notifications of solutions and neighbourhoods
is given in Algorithm 4.

Algorithm 4 Local Search
1: procedure LocalSearch

2: Generate feasible Solution s
3: Select a neighbourhood function N
4: repeat
5: Search neighbourhood N(s)
6: if (s′ with f(s′) < f(s) found) then
7: Set s = s′

8: end if
9: until no feasible lower cost solution s′ is found

10: end procedure

k-opt Local Search

The most studied algorithms of all of the local search algorithms are k-exchange
neighbourhood, which is an example of edge exchange algorithm. The k-exchange
neighbourhood is for the TSP commonly referred to as k-opt. For the TSP this
local search algorithm can be defined as follows. Let S corresponds to the set of all
tours of a TSP instance. Let us also introduce a metric p between tours in S, which
measures the distance between tours with the number of edges not mutual to both,
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Figure 2.1: Edge removal and reconnection of 2-opt algorithm

i.e., the number of edges, which represent part of tour T , but not part of tour T ′.
The k-opt local search can then be stated by:

Nk(T ) =
{

T ′|p(T, T ′) = k, T ′ ∈ S
}

.

From the above definition we should see that this statement introduces a whole set
of search neighbourhoods which is parameterised by k. Usually, the higher the k
of a k-opt local search, the better the resulting tours. In spite of this, since the
neighborhood size grows exponentially with k, only small k appear to be practical.

2-opt

The 2-opt local search illustrates the simplest of the k-opt local search algo-
rithms for the TSP. The 2-opt algorithm was first proposed in [29], even though the
basic move had already been suggested in [48]. This move deletes two edges, as a
consequence the tour is aparted into two segments, and then algorithm reconnects
those segments in the other possible way. An illustration of this edge removal and
reconnection operation is presented in Figure 2.1.

Just as is shown in the figure, this approach is equal to a tour segment reversal.
The order of the tour segment B, ..., C is reversed with respect to C, ..., B. For the
Euclidean TSP, 2-opt local search removes the crossings of edges in the tour. For
symmetric TSPs a 2-opt move usually produce an improvement to the current tour
if d(A,C) + d(B,D) < d(A,B) + d(C,D).

There are two different representations of a 2-opt move, i.e. the move presented
in the Figure 2.1 is equivalent to the move, where the tour segment between D and A
is reversed. To denote an improvement, for a 2-opt move, either d(A,B) > d(B,D)
or d(C,D) > d(A,C) or both must hold. Because of this the attention can be
concentrated on moves satisfying d(A,B) > d(B,D). This imply that once A and B
are fixed we can bound the search for an improving move on cities D that are closer
to B than A.

So to take advantage of this feature Steiglitz and Weiner [127] introduce a data
structure to specify suitable candidates quickly. And so, storing for each city a list
of the remaining cities sorted with increasing distances. When seeking for a 2-opt
move, one has to start at the beginning of the list of B, move forward through the
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list observing its members until d(A,B) ≤ d(B,D). The difficulty of this approach is
that creating the lists has time complexity Θ(n2 log n) and requires space quadratic
in n. As a consequence in practice this list is commonly limited to only k-nearest
neighbours for each city with fixed k, even if the resulting tour may not be locally
2-optimal. In practice only a small loss of tour quality is reported [73].

The Lin-Kernighan Algorithm

For over 30 years the world’s champion heuristic for the TSP was usually recog-
nized to be the local search algorithm of Lin and Kernighan (LK) [95]. LK algorithm
is both a abstraction of the k-opt local search algorithm and an upgrade of percep-
tions the same authors had formerly used to the problem of graph partitioning. The
fundamental idea of the LK heuristic is to develop composite moves by combining
simple submoves to replace a variable number of edges. Because of this property this
tehnique is also called a variable depth k-opt. The submoves commonly employed
are simple k-opt local search moves, usually 2-opt and 3-opt moves.

The LK algorithm can be described as follows. In each step, the tour is broken
up at one node forming a spanning tree with an extra edge (1-tree). By breaking
up one edge of the degree-3 node and connecting the two degree-1 nodes this 1-tree
can be with ease transformed into a possible TSP tour. Consequently the algorithm
performs successive changes of edges until no more swapping are possible or until
the best k-change in an iteration is found. A more comprehensive description of the
LK algorithm can be found in the paper by Lin and Kernighan [95]. The original
Lin-Kernighan heuristic was suggested for symmetric TSPs only.

Besides the high effort needed for its implementation the main drawback of the
LK algorithm is its rather long running time. Because of this, several improvements
to the genuine algorithm have been made. In the paper [122] Reinelt, describes a
variation of LK algorithm using the segment reversals and node insertion. In this
variant a special 3-opt move consists of a single node to enlarge the Lin-Kernighan
neighbourhood. Some different approaches can be found in [137], and in [119]. In
this two papers the search neighbourhood is the so called flower transition, firstly
suggested by Glover in [55] where the base is a 1-tree consisting of a cycle and a path
attached to it.

An effective variation of the LK algorithm based on a sequence of 5-opt moves
instead of 2-opt segment reversals was suggested in 2000 by Helsgaun [69]. The
estimation of these move sequences is accomplished by considering very small candi-
date lists. Conversely, this candidate lists are determined in a very complex manner.
Other approaches and variants of the LK algorithm have try to beat problems pro-
duced by very large TSP instances. One variant of the LK algorithm, which suggest
an improvement for LK searches was presented in [6]. For a comparison of differ-
ent Lin-Kernighan implementations we refer to a Johnson and McGeoch work on
heuristics for the symmetric TSP [74].
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2.2.4 Nature Inspired Algorithms

The area of nature-inspired computing has grown in popularity over the last fifty
years. Many of the nature-inspired algorithms currently in use are being applied to a
wide range of problems, among them are of course ones tackling the TSP. The term
nature is used to refer to any component of the universe, which is not a product
of planned human design. The nature-inspired algorithms are in the category of
metaheuristic algorithms, where little or no problem particular information is used
in the design of the algorithm. If we restrict our attention to the biological part
of nature, we can highlight some of the useful properties. In nature, managing the
trade-off between solution quality and time is basic to survival. A likewise trade-off
is useful when using a heuristic to solve the optimization problems. The 1fittest
individuals are those with supreme problem-solving feature. It is these problem-
solving features which have been the source of inspiration for many nature-inspired
tehniques. We will now represent several metaheuristic examples of nature-inspired
algorithms for optimization problems, with focus on those tehniques, which is used
for tackling the TSP.

Simulated Annealing

Simulated Annealing (SA) was introduced by Kirkpatric et.al. in [84]. The SA opti-
mization method builds on a similarity derived from physics processes, where a low
energy state of a solid is inquired by an annealing procedure. The similarity with
combinatorial optimization occur, when the optimal solution to a given combinato-
rial optimization problem corresponds to the lowest energy of the solid. Therefore, a
solution of a problem is perturbed and a neighbor solution is established with prob-
ability according to a Boltzmann distribution e

−∆E
k∗T . Here ∆E correspond to the

difference in quality between the current solution and the perturbed one. Furthe-
more, k is a scaling parameter and T correspond to the temperature of the process.

The higher the temperature the greater is the probability of acquiring a perturbed
solution. When the temperature is low, improving moves will be privileged. By
reducing T using an "annealing schedule" it is possible to simulate the freezing
process. The pseudocode of the SA is shown in Algorithm 5:

We should note the comments in pseudocode, which are there for better compre-
hension of an algorithm. The efficiency of the SA in solving a specific combinatorial
optimization problem stands in the definition of the the annealing schedule and move
operator. Since the first appearance of SA the TSP has served as a test problem, con-
sidered in the original paper of Kirpatrick [84]. For this particular approach the SA
neighbourhood was 2-opt local searcher. In addition, Boese’s PhD dissertation [13]
comprehensively analyzes the optimal annealing schemes for the TSP.

1The fittest individuals here means the best individuals. This kind of glossary is used respecting

the vocabulary of the natural scientists.
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Algorithm 5 Simulated Annealing
1: procedure SimulatedAnnealing

2: t = T (0), n = 1
3: best solution sbest = S
4: while (Termination Criterion Unfulfilled) do
5: Generate s′ ∈ N(s)
6: /* we obtain a neighbor of s applying the move operator N() */
7: ∆f = f(s)− f(s′)
8: /* we calculate the difference in fitness */
9: if ((∆f ≤ 0) or (e

−∆E
k∗T > random [0, 1])) then

10: s = s′

11: /* we acquire the perturbed move if it is better than the current */
12: /* or if the Boltzmann criterion is fulfilled */
13: end if
14: if (f(s) > f(sbest)) then
15: sbest = s
16: end if
17: t = T (n)
18: /* we use the annealing schedule for time n */
19: n = n+ 1
20: end while
21: Return sbest
22: end procedure
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Ant Colony Optimization

A recent and more and more popular metaheuristic technique inspired by nature
is the Ant Colony Optimization (ACO) introduced in 1997 by Dorigo. ACO [38]
presents a population based approach, that was inspired by the behavior of real ants
in nature. The essence of this technique is to exploit the fact that ants in nature
appear very effective in finding the shortest paths to a source of food. Ants are able
to find the shortest paths through communication transmitted by leaving pheromone
trails while exploring for food. For the TSP, ACO represents a constructive tech-
nique, which is frequently updated until some stopping condition is reached. Starting
with n ants, each positioned at a different node, the ants consecutively move along
the edges to create feasible tours. Determination, on which node to visit next are
made in a probabalistic manner established on the pheromone trail left at earlier in-
vestigation. The pheromone trail is updated after each iteration depositing a higher
amount of pheromone at edges which was used in the shortest tours.

There exist a several improvements to this basic approach that have been pro-
posed in the literature. Especially the conjunction with local search algorithms to
speed up the search process [128]. The computational results described in the lit-
erature range from very poor to moderate quality in [39] to solutions of very good
quality presented in [128]. More information on ACO for the TSP can be found
in [39, 128].

Evolutionary Algorithms

Evolutionary Algorithms (EA) simulate the process of biological evolution in na-
ture. EAs are search methods which are motivated by natural selection and survival
of the fittest from biological world. EA performs a search within a population of
solutions. Each iteration i.e. generation of an EA includes a competitive selection
among all solutions in the population. This selection results in survival of the fittest
and erasure of the poor solutions from the population. Recombination is performed
by exchanging parts of a solution with another one. This proces forms the new so-
lution that may be better than the previous ones. Furthermore, a solution can be
mutated by manipulating a part of it. The evolutionary operators, recombination
i.e. crossover and mutation, are used to develop the population to areas of the search
space, in which good solutions exist. Four main evolutionary algorithm classes have
been introduced: genetic programming is a computational method, which was pro-
posed by Koza [85], Evolutionary Strategies (ES) introduced by Rechenberg [117],
Evolutionary Programming (EP) developed by Fogel [49], and Genetic Algorithms
(GA), proposed by Holland [70]. The general template of an EA is shown in Algo-
rithm 6. We should note that the P in pseudocode stands for the population of the
individuals. Note also, that all mentioned variants of evolutionary algorithm (GA,
EP, and ES) are special cases of this scheme.

For the TSP the EAs may be shortly outlined as follows. Starting from a popula-
tion of t individuals i.e. tours, select t′ different individuals for mutation and parents
for mating. Perform mutations on the selected individuals and the mating recom-
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Algorithm 6 Evolutionary Algorithms
1: procedure EA

2: t := 0
3: initialize population (P (0))
4: evaluate (P (0))
5: repeat
6: P ′ := select for variation (P (t))
7: recombine (P ′)
8: mutate (P ′)
9: evaluate (P ′)

10: P (t+ 1) := select for survival (P (t), P ′)
11: t := t+ 1
12: until terminate = true
13: end procedure

bination. In recombination the information of two parent individuals are combined
in order to create an offspring individual. Then select t existing individuals of the
new population succeeding the selection strategy. This procedure is consecutively
applied for some iterations, i.e., generations until some termination criteria is met.
For further reading on EA we refer to [7, 105,126].

Genetic Algorithms

Genetic Algorithms (GA) were introduced by Holland in the 1970s [70], and well
researched by many authors due present date [42, 50, 51, 102, 108, 116, 125, 129, 133,
134, 138, 139]. These methods are adaptive search techniques based on the instru-
ment of natural selection and the survival of the fittest concept. A comprehensive
introduction to GA is given in Goldberg’s book [57]. The main inspiration behind
GA is to start with randomly created initial solutions and implement the survival of
the fittest strategy to develop the better solutions through iterations i.e. generations.

The pseudocode of a GA can be seen in Algorithm 7.

Algorithm 7 Genetic Algorithm
1: procedure GA

2: Randomly generate an initial population P (t)
3: while (Termination Criterion Unfulfilled) do
4: Compute the fitness f(p) ∀p ∈ P (t)
5: According to f(p) choose a subset of P (T ), store them in M(t)
6: Recombine and mutate individuals in M(t), store results in M ′(t)
7: Generate P (t+ 1) by selecting some individuals from P (t) and M ′(t)
8: t = t+ 1
9: end while

10: Return best p ∈ P (t− 1)
11: end procedure
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Same as in the case of EAs the P in pseudocode stands for the population of the
individuals. Furthermore, a GA process includes initial generation of individuals i.e
populations (line 2 in the algorithm), evaluation of fitness (line 4 in the algorithm),
selection of chromosomes (line 5 in the algorithm) and applying the genetic operators
for reproduction, recombination and mutation (line 6 in the algorithm). How to en-
code a search solution is a basic and key issue in designing a Genetic Algorithm [21].
Many optimization operators for TSP were proposed by Goldberg [57]. A usually
used strategy for encoding is a transposition expression [118]. In the transposition
expression encoding strategy, each city of the TSP is encoded as a gene of the chro-
mosome. This encoding include the constraints that each city appears only once
in the chromosome. Transposition expression is one of the best expression for TSP
which based on the order of tour, on the other hand such a procedure may leads
to infeasible tour after traditional recombination operator. This is a usual case in
TSP. Even if feasibility can be maintained in numerous ways by some repair algo-
rithms, such methods can spend a substantial amount of time and oftenly retain
convergence [118].

To overcome a possible creation of infeasible tours another encoding method was
introduced. It is the Random Keys encoding [9], which was introduced by Bean. A
random numbers are used to encode the construction of the solution in random keys
encoding. Such representation guarantees that feasible tours are preserved during
the use of genetic operators.

In the GA, the recombination and mutation are two most important factors for
the success of the algorithm. Recombination is a crossover operator that takes two
individuals i.e genomes, and cuts their chromosome strings at a number of chosen po-
sitions. The sub-segments produced by that cuts are then combined and reconnected
to produce an entire chromosome with characteristics of the two parents. Therefore,
the basic role of recombination is information exchange between successful solutions.

Numbers of different GA recombination operators have been proposed in the
literature to solve the TSP. The linear order crossover [33], partially mapped cross-
over [57] and order based crossover [9,57] are the usually used recombination techni-
ques for TSP. Aside from this three usually used recombination algorithms, many
different recombination operators are proposed for the TSP, for example: edge map
crossover [50], distance preserving crossover [102], sub-tour crossover [136], generic
crossover [103], EAX [106], NGA [76], GSX [107], heuristic based crossover [93].

The other GA operator usually used is mutation. It is used to produce the varia-
tion of genomes. Mutation is applied stochastically to a child after recombination. It
alters one or more genes with a small probability granting a small amount of random
search. As a result of that, no point in the whole search space has a zero proba-
bility of being inspected by the genetic algorithm. Therefore, a mutation operator
is used to enhance the diversity and provide a chance to escape from local optima.
Many mutation operators were proposed in the literature. Some of them are: in-
sert, inverse, swap, displace, hybrid mutation [81], and heuristic mutation. The first
five listed here are realized by small modification of genes. Heuristic mutation was
proposed by Cheng and Gen [20]. This operator adopts a neighborhood strategy to
improve the solution.

Overall the GAs have shown to be useful and efficient when the search space



Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 28

is large, complex or poorly understood. A lot of progress was made recently. In
2006, Carter and Ragsdale propose a new GA chromosome and related operators
for the Multiple TSP [19]. In 2007, Nguyen described a hybrid GA based on a
parallel implementation of a multi population steady-state GA involving local search
heuristics [108].

In next two subsections we show two recombination operators, Edge Map Cross-
over and Distance Preserving Crossover.

Edge Map Crossover

Edge Map Crossover (EMX) [50] is an implementation of the recombination op-
erator for GA. It makes use of a so called edge map. Edge map is a table in which
each location is placed. For each location there is a list, in which the neighbouring
locations are registered with this location. Recombination is then built as follows.
Select the first location of one of both parents to be the current location. Second
step is to delete the current location from the edge map lists. If the current location
still has remaining edges, go to the previous step, otherwise go to the next step.
Select the new current location from the edge map lists of the current location as the
one with the shortest edge map list. If there are remaining locations, select the one
with the shortest edge map list to be the current location and return to second step.
An example of EMX operator is scripted below in section. We should note that an
explanation of the example follows a procedure composed above.

Example:

Parents: 1-2-3-4-5-6; 2-4-3-1-5-6

Edge map: 1) 2 6 3 5; 2) 1 3 4 6; 3) 2 4 1;

4) 3 5 2; 5) 4 6 1; 6) 1 5 2 6

1. Random choice: 2,

2. Next candidates: 1 3 4 6, choose from 3 4 6 same#edges, choose 3,

3. Next candidates: 1 4 (edge list 4 < edge list 1), choose 4,

4. Next candidate: 5, choose 5,

5. Next candidate: 1 6 (tie breaking) choose 1,

6. Next candidate; 6, choose 6.

Offspring: 2-3-4-5-1-6

Distance Preserving Crossover

Distance Preserving Crossover (DPX) is another implementation of the recom-
bination operator for GAs. DPX attempts to create a new tour with the same
distance to both parents [69]. In order to establish this, the content of the first par-
ent is copied to the offspring i.e child and all edges, that do not occur in the second
parent, are removed. The resulting fragments are reconnected without making use of
non-overlapping edges of the parents. If edge (i, j) has been destroyed, the nearest
available neighbor k of i from the remaining fragments, is selected and the edge (i, k)
is added to the tour. An example of DPX operator is scripted below
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Example: Parents: 5-3-9-1-2-8-0-6-7-4; 1-2-5-3-9-4-8-6-0-7

Fragments: 5-3-9|1-2|8|0-6|7|4

Offspring: 6-0-5-3-9-8-7-2-1-4

We procede to next subsection which in more details describes the hybrid genetic
algorithms.

Hybrid Genetic Algorithms - Memetic Algorithms

Hybrid Genetic Algorithms are evolutionary algorithms that interpolate a phase
of particular optimization or learning as part of their search procedure. Earliest
references on Hybrid Genetic Algorithms are tracked to [47,67,132]. The most basic
Hybrid Genetic Algorithm can be seen below in Algorithm 8 :

Algorithm 8 Hybrid Genetic Algorithm
1: procedure HybridGA

2: Randomly generate an initial population P (t)
3: while (Termination Criterion Unfulfilled) do
4: Compute the fitness f(p) ∀p ∈ P (t)
5: According to f(p) choose a subset of P (T ), store them in M(t)
6: Recombine and mutate individuals in M(t), store results in M ′(t)
7: Improve by local search (M ′(t))
8: Generate P (t+ 1) by selecting some individuals from P (t) and M ′(t)
9: t = t+ 1

10: end while
11: Return best p ∈ P (t− 1)
12: end procedure

Same as in the case of GAs the P in pseudocode stands for the population
of the individuals. Furthermore, a process of hybrid genetic algorithms includes
initial generation of individuals i.e populations (line 2 in the algorithm), evaluation
of fitness (line 4 in the algorithm), selection of chromosomes (line 5 in the algorithm)
and applying the genetic operators for reproduction, recombination and mutation
(line 6 in the algorithm). In the pseudocode above the difference from a standard
i.e canonical GA is the use of local search. It is used to improve the newly created
individuals.

We should note that this is just one possible way to hybridize a GA with local
search. Even though it seems from the Algorithm 8, to be a naive minor change, is in
fact a crucial deviance from a canonical GA. Hybrid genetic algorithms are inspired
by example of adaptation in natural systems that combine evolutionary adaptation
of populations of genomes with individual learning.

In the literature, Hybrid Genetic Algorithms have also been named Memetic
Algorithms (MA) [61,86–88,103,112], Genetic Local Searchers (GLS) [101], Lamar-
ckian Genetic Algorithms [104], Baldwinian Genetic Algorithms [89]. The Memetic
Algorithms differ from other hybrid evolutionary techniques that all individuals in
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the population are treated as local optimum, since after each mutation or recombi-
nation, a local search is applied. The name genetic local search (GLS) was firstly
used by Ulder in [130] to describe an evolutionary algorithm with recombination and
then applied local search. In [17], Bui suggest a GLS algorithm with Lin-Kernighan
heuristic as the neighbourhood procedure. They developed a k-point recombination
operator with an additional repair mechanism for producing the feasible offspring.
In [80] Katayama suggest an evolutionary algorithm with Lin-Kernighan algorithm
and small populations of just two individuals and a heuristic recombination scheme.

2.2.5 Finding exact solutions of the TSP

Finding the exact solution to a TSP with n nodes involves to check (n − 1)! of
possible tours. Evaluation of all possible tours is infeasible for even small instances
of TSP. For finding the optimal tour Held and Karp [68] introduced the following
dynamic programming formulation: Given a subset of node pointers, discarding the
first node, S ⊂ {2, 3, ..., n} and l ∈ S, let d∗(S, l) stand for the length of the shortest
path from node 1 to node l, visiting all nodes in S in between. For S = {l} , d∗(S, l)
is defined as d1l. Then the shortest path for larger sets with |S| > 1 is:

d∗(S, l) = min
m∈S\{l}

(d∗(S\ {l} ,m) + dml). (2.9)

In conclusion, the minimal tour length for a complete tour which involve bringing
back to node 1 is:

d∗∗ = min
l∈{2,3,...,n}

(d∗({2, 3, ..., n} , l) + dl1). (2.10)

Using the Equation 2.9 and the Equation 2.10, the quantities d∗(S, l) can be
calculated recursively and the minimal tour length d∗∗ can be obtained. In a next
phase, the optimal permutation π = {1, i2, i3, ..., in} of node pointers 1 through n
can be calculated in oposite manner, starting with in and working consecutively back
to i2. This phase take advantage of the fact that a permutation π can be optimal
only if

d∗∗ = d∗({2, 3, ..., n} , in) + din1 (2.11)

and, for 2 ≤ p ≤ n− 1,

d∗({i2, i3, ..., ip, ip+1} , ip+1) = d∗({i2, i3, ..., ip} , ip) + dipip+1
(2.12)

The complexity of space for saving the values for all d∗(S, l) is (n− 1)2n−2 which
strictly restricts the dynamic programming algorithm to TSP of small sizes [65].

A quite different procedure can address larger instances by using a relaxation of
the LP problem. This procedure iteratively constrain the relaxation until a solution
is found. This technique for solving LP problems is called cutting plane method and
was introduced by Dantzig, Fulkerson, and Johnson in 1954 [30].
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Each iteration of a method begins with using instead of the original linear in-
equality description S the relaxation Ax ≤ b. Here the polyhedron P determined
by the relaxation contains S and is bounded. In addition the optimal solution x∗

of the relaxed problem can be reached using standard LP solvers. If the x∗ belongs
to S, the optimal solution of the original problem is obtained. If not then a linear
inequality can be found which is content by all points in S but disturbed by x∗.
This inequality is called a cutting plane or cut. If no additional cutting planes can
be found or the improvement becomes very small, the problem is branched into two
subproblems. These sub-problems can be minimized individually. Branching is done
step by step that leads to a binary tree of subproblems. Then each of a subproblem
is solved without further branching or is found to be irrelevant. Irrelevant means,
that relaxed version previously produces a longer path than a solution of another
subproblem. This method is called branch and cut and was introduced by Padberg
and Rinaldi, in 1990 [115]. The branch and cut method is a variation of the branch
and bound procedure presented by Land and Doig, in 1960 [90].

The initial polyhedron P used by Dantzig [30] include all vectors x such that for
all e ∈ E is 0 ≤ xe ≤ 1. Furthermore, in the resulting tour each node is connected
to exactly two other nodes. Different methods for finding cuts to prevent sub-tours
(sub-tour elimination inequalities) and to guarantee an integer solution, Gomory
cuts were built over time [65]. At present the most effective accomplishment of
this technique is Concorde described in [4]. Concorde is a computer code for the
symmetric TSP. The code is written in the AnsiC programming language. At the
time of writing this dissertation the Concorde’s TSP solver has been used to obtain
the optimal solutions to 106 of the 110 instances from TSPLIB [121]. In Chapter 3
the Concorde’s TSP solver was used for computing the lower bound for the quality
of solutions for tested algorithms. Furthermore, in Chapter 4 it was used as a solver
for the TSP.

Thus we conclude Chapter 2. In Chapter 3 we systematically study approaches
to Hybrid Genetic Algorithm. Furthermore, we investigate some of the constructive,
local search and by nature inspired approaches that are described in this chapter
and compare their performance to proposed grafted genetic algorithm for solving
symmetric TSP.
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Chapter 3

Grafted Genetic Algorithm for

Traveling Salesman Problem

Results of this chapter are published in the following articles:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the Seventeenth International Electrotechnical and
Computer Science Conference, ERK 2008., Portoroz, (2008), 115–118.

• M. Djordjevic, M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt Al-
gorithm Based Local Searcher Into the Genetic Algorithm, Proceedings of the
9th WSEAS International Conference on Applied Informatics and Communi-
cations, AIC 2009., Moscow, (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstracts
of International Conference on Operations Research, OR 2011., Zurich, (2011),
130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011., Dubrovnik, (2011), 515–520.

• M. Djordjevic, M. Grgurovic, and A. Brodnik, Performance Analysis of Par-
tial Use of Local Optimization Operator on Genetic Algorithm for Traveling
Salesman Problem, Business Systems Research, Print ISSN 1847-8344; Online
ISSN 1847-9375, in press.

3.1 Introduction

Genetic Algorithms (GA), which was described in detail in Section 2.2.4 use some
mechanisms inspired by biological evolution [70]. They are applied on a finite set
of individuals called population. Each individual in a population represents one of
the feasible solutions of the search space. Mapping between genetic codes and the



Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 34

search space is called encoding and can be binary or over some alphabet of higher
cardinality. Good choice of encoding is a basic condition for successful application
of a genetic algorithm. Each individual in the population is assigned a value called
fitness. Fitness represents a relative indicator of quality of an individual compared to
other individuals in the population. Selection operator chooses individuals from the
current population and takes the ones, that are transferred to the next generation.
Thereby, individuals with better fitness are more likely to survive in the population‘s
next generation. The recombination operator combines parts of genetic code of the
individuals (parents) into codes of new individuals (offsprings). Such a mixing of ge-
netic material enables that well-fitted individuals or their relatively good genes give
even better offspring. By a successive application of selection and crossover, the di-
versity of genetic material can be decreased, which leads to a premature convergence
in a local optimum, which may be far from a global one.

The components of the genetic algorithm software system are: Genotype, Fitness
function, Recombinator, Selector, Mater, Replacer, Terminator, and in our system
a (Local) Optimizer which is a new extended component. In the TSP a set of cities
{c1, c2, ...Cn} is considered and for each pair {ci, cj} of distinct cities a distance
d(ci, cj) is given. The goal is to find an ordering π of the cities that minimizes the
quantity

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (3.1)

This quantity is referred to as the minimum tour length since it is the length
of the tour a salesman would make, when visiting the cities in the order specified
by the permutation, returning at the end to the initial city. We will concentrate
in this chapter on the symmetric TSP, in which the distances satisfy d(ci, cj) =
d(cj , ci) for 1 ≤ i, j ≤ n and the distance is Euclidean. The TSP is known to
be NP-hard [53], even under substantial restrictions, we are restricted to compute
approximate solutions. Details about TSP can be found in Section 2.1.

There were proposed various greedy heuristics for solving TSP including nearest
neighbor, details can be found in Section 2.2.2 and 2-opt. We will use the later in
our algorithm as a hybridization component of a canonical GA. The 2-opt is a simple
optimization algorithm for the TSP, it is in details described in Section 2.2.3. The
main idea is to take a route that crosses itself and reorder it so, that it does not cross
itself any more by reducing the tour length. An exchange step consists of removing
two edges from the current tour and reconnecting the resulting two paths in the best
possible way, as shown in Figure 2.1. Once we choose the two edges to delete, we
do not have a choice about which edges to add. There is only one way to add new
edges, that results in a valid tour.

The 2-opt optimization is used to hybridize GA meta-heuristic to solve TSP.
Although the 2-opt algorithm [44,69] performs well and can be applied to TSP with
many cities, it finds only a local minimum. Furthermore, for the general (i.e. non-
Euclidean) version of TSP it is known that there is no upper bound on a quality of
a heuristic algorithms unless P = NP [53]. Nevertheless, we will be interested in
relative quality of our algorithm on a given set of samples.
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In practice one of the most frequently used programs for solving TSP is Con-
corde [4]. It is based on the branch and cut method [65]. Besides it there is a
range of solutions based on meta-heuristics including life-inspired approaches like
ant colonies, see Section 2.2.4 and GA, see Section 2.2.4. Our algorithm is based on
the later. Although there are known approaches that tried to combine canonical GA
with local optimization (cf. Memetic Algorithms in [103], or hybridization of GA
in [124], details can be found in Section 2.2.4), our solution is novel in two respects.
First, we include local optimization as one of the operators of GA and secondly we
do not use it in all generations.

The rest of the chapter is organized as follows. First we introduce the general
framework of our algorithm including the principle of methodology and present the
procedure of hybridization of TSP solving genetic algorithm. The third section de-
scribes two experiments and instances of TSP used in the experiments. The section
is followed by experimental results, their analysis and discussion. The chapter con-
cludes by summarizing the results and conclusion.

3.2 Grafted GA for the TSP

Grafting in botany is when the tissues of one plant are affixed to the tissues of
another. Grafting can reduce the time to flowering, shorten the breeding program,
etc. Similarly we introduced into a canonical GA a local optimizer - we grafted GA
or we hybridized it. This way we (locally) optimize genomes in an evolution process.
There exist a number of local optimizers, which can be used on their own as a greedy
solution to NP-hard problems - e.g. Freisleben in [50] used a k-opt heuristics. There
exists even its hardware implementation [71].

The pseudo-code of our Grafted Genetic Algorithm (GGA) is listed in Algo-
rithm 9.

Algorithm 9 Grafted Genetic Algorithm
1: procedure GGA

2: t = 0
3: p(t) := Initialize()
4: q(t) := Evaluate(P (t))
5: while (q(t) < qexpected) and (t < tmax) do
6: sel := Select(P (t))
7: mat := Mate(sel)
8: rec := for each pair m ∈ mat do Recombine(m)
9: loc := for each genome r ∈ rec do Optimize(r)

10: P (t+ 1) := Replace(loc, P (t))
11: q(t+ 1) := Evaluate(P (t+ 1))
12: evaluate (P (t+ 1))
13: t := t+ 1
14: end while
15: end procedure
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As usual, our algorithm stops either when the expected quality of solution is
reached or when the maximum number of generations tmax is passed. The former
can be measured in various terms starting from the absolute quality value to the
relative diversification of population (e.g. standard deviation). On the other hand
the later is measured either in the number of generations or in the total time elapsed.
Tournament Selector (line 6 in the algorithm) places groups of genomes from the
population together, creating the groups from top to bottom with respect to the
enumerative ordering of the genomes in the population and selects the best of the
genomes within this group. This is repeated until the required amount of genomes
is selected. The Random Mater (line 7 in the algorithm) is a simple way of mating
parents. It mates the parents as enumerated in the population at random using the
mating size to create groups until no more groups can be created. The new offspring
only replacer is the implementation of the classical replacement strategy that simply
only allows the offspring to survive. Thus the genomes from the next generation
replace the entire current population.

We studied two versions of recombination (line 8 in the algorithm). The first,
Edge Map Crossover, EMX for short [103], uses a so-called edge map EM [∗] that
contains a list of neighbouring cities for each city. First the operator for each edge
(u, v) in a parent genomes A and B, adds v to the edge-map list EM [u] and u to
EM [v] for a symmetric version of TSP. Then the operator works as follows:

1. Pick a random city to be the current location u.

2. Remove the current location u from all edge map lists EM [∗].

3. If the current location EM [u] still has remaining edges, go to step 4, otherwise
go to step 5.

4. Choose the new current location u′ from the edge map list EM [u] as the one
with the shortest edge map list EM [u′]. Set u := u′ and go to step 2.

5. If there are left any locations, choose as the new current location u′ the one
with the shortest edge map list EM [u′]. Set u := u′ and go to step 2.

The EMX is in more details presented in Section 2.2.4. The second recombination
operator, that was studied, was a Distance Preserving Crossover, DPX for short [50].
It creates a new tour (offspring) preserving the same distance in the number of edges
to both parents. In detail, the operator DPX creates an offspring C from parents A
and B as follows:

1. Pick at random one of the parents (wlog.A) and copy it to C.

2. If (u, v) ∈ C and (u, v) /∈ B delete it from C. At this point C contains fragments
of connected cities (ul → vl), . . . , (uk → vk), where in some fragments ui = vi.
We call set of ui and vi the end-points of C,EPc.

3. Pick at random a city x from EPc and delete it from EPc.

4. Pick from EPc the closest city y to x so that there is edge (x, y) neither in A
nor in B. Delete y from EPc.
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5. Merge fragments (ui → y) and (x→ vj) into (ui → vj).

6. If EPc is not empty, go to step 3.

The DPX is in more details described in Section 2.2.4. Although both recom-
bination operators produced offsprings from valid parents, they produced them in
a random way. Because of randomization, the selection and mating (lines 5 and 6
respectively) lost their role. Moreover, the randomization is a very good source of
diversification. However, we are missing in our meta-heuristic the process of special-
ization i.e. intensification.

This was the reason to extend our algorithm with a specialization step - we grafted
a canonical genetic algorithm with a local optimizer and obtained a grafted genetic
algorithm, GGA [34], [37], [35], [36]. We did not use a k-opt heuristics due to its
complexity, but rather its simpler version 2-opt explained in previous section (see
Figure 2.1). The hybridization occurs in line 9 of the pseudocode of Algorithm 9.

3.3 Experiment

For testing our strategy and comparing it to other solutions we used the instances
of symmetric TSP found on TSPLIB [121]. We used relatively small instances, for
which best solutions are known. The goal of this research was not to find a better
algorithm, but rather to study on a controlled environment the impact of grafting a
genetic algorithm.

In the first experiment we used 20 instances, with different sizes in a range from
14 to 150 cities per instance. We studied our proposed method (grafted genetic algo-
rithm (GGA)) using two different recombination operators: an edge map crossover
(GGAemx) and a distance preserving crossover (GGAdpx). As the upper and lower
limits on the quality of solution we used greedy heuristic and Concorde [4] respec-
tively. For the sake of completeness we compared our method also with 2-opt heuris-
tic itself and with a canonical genetic algorithm. The main difference between our
method and canonical genetic algorithm is that we use local optimizer in every gen-
eration of the algorithm.

In the second experiment we studied what happens if we do not use local op-
timization in all generations – in evaluation it was used in 10, 20, 30, 40, 50, 60,
70, 80 and 90 percents of the generations. Furthermore, for each percentage we ap-
plied local optimization in three different ways: at random generations, at the initial
generations and at the ending ones.

All experiments were conducted on a computer with Pentium(R) 2.8 GHz CPU
and Windows 7 operating system. In our results we cannot directly compare the
running times of different solutions as they were implemented in different program-
ming languages. On one hand we used as a development environment for GGA the
Java written EA Visualizer [15], while Concorde is an AnsiC application. However,
we can compare running times of GGA for different instances and cases explained
before.
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3.4 Evaluation

We present results separately for the first and for the second experiment. In both
experiments we used instances of TSP from a TSPLIB of various sizes. The name
of the instance also contains its size (the number of sites, cf. the first columns of
Table 3.1). Next, in the experiments we measured three quantities: the wall clock
time, the number of generations and the quality of the result. The later was measured
against the optimal solution obtained by Concorde. The quality of algorithm A is
defined as

qA =
lA − lC

lC
, (3.2)

where lC is a path length obtained by Concorde and lA is a path length obtained
by A. We express the quality always in percents, where, for example, 4% means 4%
worse than Concorde.

Let us look first at the results of the first experiment (cf. Table 3.1), in which we
compared our GGA against greedy algorithm and Concorde. We also compared it
against canonical genetic algorithm (GA). The termination condition in all genetic
algorithms was: either standard deviation of genomes was 0 ((local) minimum was
reached) or time 100 seconds time limit expired.

We first look at the quality of results, then at the running time and finally com-
ment on a trade-off between the quality and the running time. The last column of
Table 3.1 gives results of Concorde and actual path length in opt column. On the
other side of the table is a greedy approach, which quality (column quality com-
puted using Equation 3.2) is mostly in the range between 10% and 20%. However,
application of a simple 2-opt heuristic on a randomly generated tour improves the
quality to approximately 10% or even better. On the other hand use of GA further
improves the quality to approximately 5%. Note, that runs in cases with 70 or more
sites terminated due to time limit and hence minimum was not reached. All these
results were expected.

The long running time of GA was a reason to graft (or hybridize) the GA with
local optimization. The result was substantial decrease in running time. In all cases
for GGAemx and for GGdpx the runs were terminated upon reaching the minimum.
The reached minimum was, however, the local one. Nonetheless, we showed, that
the combination of two methods improved the quality of results in a synergy. The
quality of result was bellow 1% off the optimum.

The sixth column in Table 3.1 describes results obtained by GGAemx. In 17 out
of 20 considered cases an optimal solution was found. Remaining three instances
differ from optimal solution in 0.01, 0.10 and 0.22 percent. The solutions were found
in relatively few generations and very fast. Execution times were 0.6 to 15.2 seconds.

The seventh column in Table 3.1 corresponds to results of GGAdpx. In 11 out
of 20 considered cases an optimal solution was found. In remained 9 cases, delivered
solutions differ from optimal in range from 0.13 to 0.32 percent. The running time
and number of generations of GGAdpx, in comparison with GGAemx, are slightly
lesser, particularly in the lowermost part of the table which represents more complex
instances.

Quantitative results on the test cases from TSPLIB show that grafted algorithms,
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Table 3.1: Five techniques for solving Euclidean TSP: greedy, 2-opt heuristic, GA
with edge map crossover, GA with distance preserving crossover, grafted versions of
the later and Concorde.
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GGAemx and GGAdpx, have advantages. Even when their’s components have seri-
ous drawbacks, their grafted combinations exhibits a very good behaviour. Results
on examples from TSPLIB show that this grafted method combines good qualities
from both methods applied and outperforms each individual method.

The running times in Table 3.1 are given for all algorithms except greedy and sim-
ple 2-opt heuristics. The later ones had running time in the range between 0.5 second
and 1.5 seconds. However, since all algorithms except Concorde were programmed
in Java, their running times are not directly comparable. Nonetheless, the relative
increase in time as function of a problem size can be compared, and this shows us ap-
proximately 25 times increase for GGAemx, 30 times increase for GGAdpx and even
70 times increase for Concorde. We should note also, that GGAemx and GGAdpx
performed approximately the same, which shows that the recombination operator
has no major influence on a final result.

In the second experiment we studied the influence of grafting (hybridization)
on running time and quality of solution. In this experiment we used only grafted
GA with edge map crossover (GGAemx) and only eleven cases from a TSPLIB (cf.
Table 3.2). In the experiment we were increasing the number of generations, in
which we applied hybridization by 10 percents, i.e. level of hybridization: from 0% –
column GAemx in Table 3.2 till 100% – column GGAemx. Moreover, we also varied
the generations in which we applied the hybridization, i.e. place of hybridization:
either in random generations (column rnd), in the beginning ones (begin) or in the
ending ones (end). The column f.a gives the running time, while the numbers in
columns q give the quality computed by using Equation 3.2.

We first observe, that application of grafting in the last generations gives the
best results. This is reasonable, as in general in this phase of meta-heuristics we
apply mostly intensification and not that much more diversification. On the other
hand it is interesting that the worse results were obtained when grafting was applied
in random generations. Nonetheless, since in practice the algorithm does not know
which are the last generations, we would need to simulate the behaviour. There are
two possibilities how to do it: either, when time limit is reached run the algorithm
for some more runs and apply hybridization or apply hybridization more and more
frequently as the number of generations increases. The later approach is also in line
with other meta-heuristics like simulated annealing.

The running time obviously linearly increases as we increase the amount of hy-
bridization (see Figure 3.1). Note, that even small hybridization of 10% drastically
improves solution – e.g. for the pr439 case to only about 4% off the optimal. On the
other hand, further hybridization keeps improving result and it is up to the user to
decide, how much hybridization should be employed.

Probably the decision on the amount of hybridization should be made considering
the running time. As seen in Figure 3.1 the number of sites increases the steepness
of the function. Therefore high hybridization at large cases would probably increase
the running time substantially.

Finally, we conducted statistical analysis of the results from Table 3.2 and we
were particularly focused on the level of hybridization for all examples together (cf.
Figure 3.2). We should note that the quality measure q is independent of the syze of
the problem. We firstly observe that the case with no hybridization is significantly
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Table 3.2: Partial grafting of a genetic algorithm
N

am
e

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

8
.9

3
%

0
.8

2
.4

6
%

2
.1

3
%

1
.2

5
%

1
.2

1
.8

0
%

0
.9

9
%

0
.9

6
%

1
.5

1
.6

2
%

0
.9

2
%

0
.7

7
%

1
.8

1
.5

8
%

0
.4

4
%

0
.2

2
%

2
.2

1
.1

4
%

0
.3

7
%

0
.1

8
%

2
.6

p
r7
6

5
.3

9
%

0
.9

0
.6

0
%

0
.4

1
%

0
.3

4
%

1
.3

0
.3

2
%

0
.2

4
%

0
.1

9
%

1
.7

0
.2

5
%

0
.1

7
%

0
.1

0
%

2
.1

0
.2

0
%

0
.1

6
%

0
.0

9
%

2
.4

0
.1

7
%

0
.1

1
%

0
.0

7
%

2
.7

g
r9
6

6
.4

6
%

1
.7

1
.6

8
%

0
.7

8
%

0
.7

0
%

2
.3

1
.3

7
%

0
.5

9
%

0
.5

5
%

2
.9

0
.9

4
%

0
.5

9
%

0
.5

5
%

3
.6

0
.7

8
%

0
.5

9
%

0
.5

5
%

4
.2

0
.8

2
%

0
.5

5
%

0
.4

7
%

4
.9

ra
t9
9

6
.1

4
%

1
.9

2
.5

3
%

1
.8

2
%

1
.6

2
%

2
.6

2
.6

7
%

0
.9

0
%

0
.7

1
%

3
.3

2
.8

1
%

0
.6

2
%

0
.5

6
%

4
.1

2
.1

3
%

0
.5

3
%

0
.3

9
%

5
.2

1
.2

8
%

0
.4

3
%

0
.3

8
%

6
.3

kr
o
A
1
0
0

6
.6

7
%

0
.6

1
.0

9
%

0
.7

3
%

0
.3

8
%

0
.9

0
.8

4
%

0
.3

8
%

0
.3

3
%

1
.2

0
.1

9
%

0
.2

2
%

0
.1

2
%

1
.5

0
.1

8
%

0
.0

8
%

0
.0

3
%

1
.8

0
.1

6
%

0
.0

3
%

0
.0

2
%

2
.1

kr
o
B
1
0
0

7
.0

2
%

0
.8

1
.6

1
%

1
.1

5
%

1
.0

2
%

1
.3

1
.2

6
%

0
.7

0
%

0
.5

3
%

1
.8

0
.7

2
%

0
.7

0
%

0
.4

2
%

2
.3

0
.7

1
%

0
.4

7
%

0
.3

5
%

2
.8

0
.7

6
%

0
.4

0
%

0
.3

8
%

3
.3

kr
o
C
1
0
0

6
.6

1
%

0
.7

2
.2

0
%

1
.0

5
%

0
.9

9
%

1
.2

1
.1

9
%

0
.9

0
%

0
.7

5
%

1
.6

0
.9

7
%

0
.6

3
%

0
.5

2
%

2
.1

0
.7

9
%

0
.4

4
%

0
.3

7
%

2
.5

0
.7

4
%

0
.3

8
%

0
.3

6
%

2
.9

kr
o
D
1
0
0

7
.6

7
%

0
.8

2
.2

0
%

1
.8

7
%

2
.1

1
%

1
.3

2
.3

9
%

2
.0

2
%

1
.4

7
%

1
.8

1
.4

4
%

1
.1

7
%

0
.9

7
%

2
.3

1
.2

6
%

0
.8

9
%

0
.6

7
%

2
.8

0
.9

7
%

0
.5

4
%

0
.4

6
%

3
.3

li
n
1
0
5

8
.5

4
%

0
.5

1
.5

0
%

1
.1

1
%

1
.1

9
%

0
.9

0
.8

9
%

0
.7

0
%

0
.5

0
%

1
.4

0
.8

3
%

0
.4

0
%

0
.4

1
%

1
.8

0
.7

1
%

0
.3

7
%

0
.2

9
%

2
.2

0
.4

6
%

0
.2

3
%

0
.2

3
%

2
.6

ch
1
5
0

8
.6

9
%

5
.4

2
.9

4
%

2
.5

2
%

2
.3

4
%

6
.2

2
.1

7
%

1
.8

9
%

1
.8

3
%

6
.9

1
.7

7
%

1
.5

8
%

1
.3

7
%

7
.8

1
.6

3
%

1
.4

6
%

1
.3

6
%

8
.7

1
.3

1
%

1
.1

9
%

0
.9

2
%

9
.6

*
p
r4
3
9

1
0

.4
5

%
3

.7
4

.9
2

%
4

.3
5

%
3

.4
8

%
1

1
4

.5
9

%
3

.4
3

%
2

.9
6

%
1

8
4

.0
4

%
3

.1
6

%
2

.8
1

%
2

5
3

.3
4

%
2

.9
2

%
2

.5
6

%
3

6
.8

3
.6

2
%

3
.1

3
%

2
.4

5
%

4
5

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

0
.0

4
%

4
.5

0
.1

5
%

0
.0

4
%

0
.0

4
%

4
.1

0
.1

8
%

0
.0

7
%

0
.0

4
%

3
.7

0
.4

4
%

0
.1

5
%

0
.1

1
%

3
.3

1
.0

7
%

0
.2

2
%

0
.1

1
%

2
.9

p
r7
6

0
.0

4
%

4
.1

0
.0

7
%

0
.0

4
%

0
.0

4
%

3
.8

0
.1

2
%

0
.1

0
%

0
.0

5
%

3
.5

0
.1

1
%

0
.1

0
%

0
.0

6
%

3
.2

0
.1

5
%

0
.1

1
%

0
.0

6
%

2
.9

g
r9
6

0
.1

2
%

8
.4

0
.2

3
%

0
.1

6
%

0
.1

2
%

7
.7

0
.2

7
%

0
.2

3
%

0
.2

0
%

7
0

.3
9

%
0

.3
5

%
0

.2
7

%
6

.3
0

.7
4

%
0

.3
5

%
0

.3
1

%
5

.6

ra
t9
9

0
.0

0
%

1
1

.9
0

.0
7

%
0

.0
0

%
0

.0
0

%
1

0
.8

0
.5

6
%

0
.0

5
%

0
.0

2
%

9
.7

0
.6

1
%

0
.1

6
%

0
.0

5
%

8
.5

1
.1

3
%

0
.3

0
%

0
.2

5
%

7
.4

kr
o
A
1
0
0

0
.0

0
%

3
.6

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
.3

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
0

.0
1

%
0

.0
0

%
0

.0
0

%
2

.7
0

.0
5

%
0

.0
0

%
0

.0
0

%
2

.4

kr
o
B
1
0
0

0
.1

0
%

5
.8

0
.2

2
%

0
.1

2
%

0
.0

9
%

5
.3

0
.3

1
%

0
.3

7
%

0
.2

2
%

4
.9

0
.5

2
%

0
.2

0
%

0
.2

4
%

4
.3

0
.8

1
%

0
.3

0
%

0
.2

9
%

3
.7

kr
o
C
1
0
0

0
.2

3
%

5
.3

0
.3

7
%

0
.3

2
%

0
.2

3
%

4
.8

0
.5

7
%

0
.5

6
%

0
.2

2
%

4
.3

0
.5

2
%

0
.3

4
%

0
.2

9
%

3
.7

0
.5

5
%

0
.3

2
%

0
.3

2
%

3
.3

kr
o
D
1
0
0

0
.0

8
%

5
.6

0
.3

2
%

0
.2

8
%

0
.0

8
%

5
.2

0
.5

8
%

0
.3

1
%

0
.2

6
%

4
.7

0
.6

1
%

0
.4

5
%

0
.4

0
%

4
.3

0
.8

8
%

0
.5

3
%

0
.4

5
%

3
.8

li
n
1
0
5

0
.1

0
%

4
.6

0
.1

2
%

0
.0

9
%

0
.1

0
%

4
.2

0
.1

1
%

0
.1

5
%

0
.1

0
%

3
.8

0
.1

3
%

0
.1

2
%

0
.0

9
%

3
.4

0
.2

1
%

0
.1

7
%

0
.1

2
%

3
.0

ch
1
5
0

0
.3

0
%

1
5

.2
0

.8
1

%
0

.3
5

%
0

.3
0

%
1

4
.1

0
.8

6
%

0
.4

2
%

0
.3

7
%

1
3

0
.9

6
%

0
.6

9
%

0
.5

4
%

1
2

1
.1

6
%

0
.9

7
%

0
.8

4
%

1
0

.7

*
p
r4
3
9

1
.3

0
%

9
1

.8
1

.7
2

%
1

.6
6

%
1

.3
4

%
7

8
.9

2
.2

8
%

2
.1

4
%

1
.9

7
%

7
0

2
.7

8
%

2
.1

8
%

2
.0

3
%

6
2

3
.2

6
%

2
.9

1
%

2
.3

1
%

5
2

.4

G
A

em
x

1
0

2
0

G
G

A
em

x

3
0

4
0

5
0

9
0

8
0

7
0

6
0



Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 42

0

10

20

30

40

50

60

70

80

90

100

pr439

ch150

lin105

kroD100

kroC100

kroB100

kroA100

rat99

gr96

pr76

eil76

Figure 3.1: The running time as a function of amount of hybridization.
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Figure 3.2: Quality of solutions: All cases
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Figure 3.3: Quality results for case pr439 as the amount of hybridization increases.

worse compared to all other cases in the Figure 3.2. Next, we find that the quality
of solution also improves as we increase the hybridization. From our experiments
seems to follow, that also lower amounts of hybridization give satisfactory results.
In Figure 3.3 we see that for the biggest tested case pr439 with 439 sites the quality
of solution improved from over 10% at no hybridization to approximately 3% at half
hybridization and to 1.3% off the optimal at total hybridization.

Further, we performed an additional statistical analysis of significance for place
of hybridization for every tested level of hybridization. The inter-group analysis
was performed using the nonparametric one-way ANOVA, by using Kruskal-Wallis
Test (KWT). The KWT shows whether there are significant differences of quality of
solutions according to the place of hybridization. The differences were considered to
be statistically significant in cases where the estimated p-values of statistical tests
were less than or equal to 0,05. Data received by the KWT shows statistically
significant difference for place of hybridization. However, intensifying the level of
hybridization further increases the p-value. In Figure 3.4 we can observe that random
place of hybridization significantly deviates from begin and end. This is confirmed
also with a p-value, which amounts 0.0003 for demonstrated level of hybridization of
10%. Moreover, in Figure 3.5 we presents the result for level of hybridization of 90%.
In illustrated case, a difference between places of hybridization is no more substantial.
This is also confirmed by KWT, from which we get a p-value approximately equal
to 0.05.

3.5 Conclusions

The goal of this chapter was to investigate influence of grafting a 2-opt based local
searcher into the canonical genetic algorithm, for solving the TSP. It is known that
genetic algorithms are very successful in solving many NP-hard problems. However,
they are much more effective, if some specific knowledge about particular problem
is utilized. In our first experiment we compared two direct techniques, with our
grafted genetic algorithms. Solutions from Concorde and greedy algorithm were
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Figure 3.4: Level of hibridization 10%: All cases
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Figure 3.5: Level of hibridization 90%: All cases
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added for better comparison. Quantitative results on test cases from TSPLIB show
that grafted algorithms have advantages. Even when both components have serious
drawbacks, their grafted combinations exhibits a very good behaviour. Results on
examples from TSPLIB show that this method combines good qualities from both
methods and outperforms each individual method.

Our experiments further show that the best results are obtained when hybridiza-
tion occurs in the last generations of the GA. This seems to be in line with classical
meta-heuristic algorithms like simulated annealing, which stop their diversification
in the last iterations. We showed, that even a small hybridization substantially
improves the quality of the result. Moreover, the hybridization in fact does not
deteriorate the running time too much.
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Chapter 4

Traveling Visitor Problem

Results of this chapter are published in the following articles:

• M. Djordjevic, M. Grgurovic, and A. Brodnik, The Traveling Visitor Problem
and Algorithms for Solving It, Book of Abstracts of 3rd Student Conference on
Operational Research, SCOR 2012., Nottingham, (2012), 26.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and the Koper Algorithm for Solving It, Book of Abstracts of 25th Conference
of European Chapter on Combinatorial Optimization, ECCO 2012., Antalya,
(2012), 10.

• M. Djordjevic, J. Zibert, M. Grgurovic, and A. Brodnik, Methods for Solving
the Traveling Visitor Problem, Proceedings of the 1st International Internet
and Business Conference, IBC 2012., Rovinj, (2012), 174–179.

4.1 Introduction

In the Traveling Salesman Problem (TSP) a set {c1, c2, ...cn} of cities is considered
and for each pair (ci, cj) where i 6= j, a distance d(ci, cj) is given. The goal is to find
a permutation π of the cities that minimizes the quantity

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (4.1)

This quantity is referred to as the tour length since it is the length of the tour
a salesman would have to travel when visiting the cities in the order specified by
the permutation π, returning at the end to the initial city. The TSP is known to be
NP-hard [75]. The case with symmetric distances has been well studied and there are
many algorithms which perform well even on large cases [3, 5]. In the literature the
TSP is usually represented and considered as a graph theoretical problem, see [62,74].
For more details about TSP see Section 2.1.

An instance of the symmetric TSP can be represented as a complete graph
G = (V,E) with the set of vertices V (cities) and set of edges between cities with
corresponding edge weights d(ci, cj). The symmetric TSP translates to the problem
of finding a Hamiltonian Tour of minimal length in the graph G.
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Applications of the TSP and its variations go way beyond the route planning
problem of a traveling salesman and span over several areas of knowledge including
mathematics, computer science, operations research, genetics, engineering, and elec-
tronics. In addition, there are many different variations of TSP which are described
and explored in the literature and also variations derived from everyday life. Some
of them are: machine scheduling problems [8, 62], the time dependent TSP [58], the
delivery man problem which is also known as the minimum latency problem and the
traveling repairman problem, for details on these problems, we refer to Section 2.1.3.

The Traveling Tourist Problem [94] is a problem in which a tourist wishes to see
all monuments (nodes) in a city, and so must visit each monument or a neighbour
thereof. The Traveling Tourist Problem shares a similar name with our problem
however it is a very different problem.

The symmetric TSP can be solved using the Grafted Genetic Algorithms (GGA)
as was shown in [34], [37], [35], [36] and in Section 3. The currently most efficient im-
plementation of the branch-and-cut method introduced by Padberg and Rinaldi [115]
for solving the symmetric TSP is named Concorde [4]. Concorde’s TSP solver has
been used to obtain the optimal solutions to the full set of 110 TSPLIB instances,
the largest having 85,900 cities. For more details see Section 2.2.5.

Finally, in a graph G besides finding the shortest closed walk we can also look
for the shortest path between any pair of vertices. This problem is in the literature
known as all-pairs shortest path problem (APSP) [27]. The Floyd-Warshall algo-
rithm [27] is an efficient algorithm to find all-pairs shortest paths on a graph G. The
all-pairs shortest path problem and the Floyd-Warshall algorithm are in more details
described in Section 2.1.5.

4.2 Traveling Visitor Problem

Suppose that a visitor arrive in a hotel in a town, and wants to visit all interesting
sites in a city exactly once and to come back to the hotel at the end of her journey.
Visitor in general moves from one place to another using the streets, walking trails
and pedestrian zones. The goal is to minimize the visitors traveling distance.

The Traveling Visitor Problem is a version of the TSP with additional constraint
that she must go around these obstacles (buildings), see Figure 4.1. Moreover, the
TSP is defined on complete graph, while Traveling Visitor Problem deals with sparse
graphs, such as street networks in cities.

Formally, the Traveling Visitor Problem (TVP) is defined as: given a connected,
weighted graph G = (V,E, c), with a set of vertices V = S ∪ X and S ∩ X = ∅,
where S is the set sites of interest (vertices u and v in Figure 4.1), and X is the set
of nodes representing crossroads in the city (vertices a and b in Figure 4.1). Further,
E a set of edges, and c a cost of traveling. The goal is to find the shortest closed
walk of simple visits of all vertices from S, according to c, although we may travel
through vertices from X arbitrary number of times.

The concepts we summarised above can be modified easily to take the directions
of the edges into account. The asymmetric TVP is then similar to the symmetric
TVP above, i.e. it is the problem of finding a closed walk of minimal length in a
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weighted graph. The Euclidean TVP, or planar TVP, is the TVP with the distance
being the ordinary Euclidean distance, since there are no obstacles. So far, this
problem, by the knowledge of the authors, has no references in publications due date
of writing it.

4.2.1 Naïve Algorithm

The simplest approach of solving TVP is to visit all places as are ordered in the city’s
tourists maps and then come back to the starting site. The result of this method
depends directly on the order in which the interesting sites are listed on the map
and does not necessary find the shortest closed walk through all sites of interest.

The first proposed method for solving the TVP is the Naïve algorithm, shown in
Algorithm 10.

Algorithm 10 Naïve Algorithm
1: procedure Naïve(S,X,E,W)
2: π ← TSP (S)
3: Z ← APSP (S ∪X,E,W )
4: cost ← 0
5: for all (i, j) ∈ π : do
6: cost ←cost +Zij

7: end for
8: end procedure

Consider sites of interest S as points on a plain with distance defined as Euclidean.
On the obtained set we solve TSP and then try to fit paths between points to avoid
obstacles. This is done by computing shortest distance between points of S but
possibly passing through X. The parameter S is the set of sites of interest, X is
the set of crossroads, a set of edges E, and W represents the edge distance matrix
of the graph G, (S ∪X × S ∪X). First we solve a TSP considering every node in
S obtaining the tour π (line 2 in the algorithm). Next step, we compute a distance

 a

uv

 b

Figure 4.1: Two rectangles represent buildings (obstacles) in the city. Red nodes
represent sites of interest in the city (vertices from set S), black nodes represent
crossroads in the city (vertices from set X), the red line represent the shortest con-
nection between two interesting sites, black lines represent the connections between
two sites of interest, going through two crossroads (this is the case in TVP)
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matrix Z using the APSP for every node in S (line 3 in the algorithm). Finally,
we calculate the final cost combining the tour π obtained in the first step with the
shortest paths from Z obtained in the second step (line 5 through 7).

4.3 Koper Algorithm

The second proposed method for solving the TVP is Koper algorithm, shown in
Algorithm 11. In Koper algorithm we first compute all-pairs shortest paths in our
graph G obtaining a distance matrix Z (Z ← S×S) (line 2 in the algorithm). In the
next step we solve the TSP using the distance matrix Z. We get the tour π, which
is a solution for TVP (line 3 in the algorithm). Algorithms presented in this section
was named so by the author of dissertation.

Algorithm 11 Koper Algorithm
1: procedure Koper(S,X,E,W)
2: Z ← APSP (S ∪X,E,W )
3: π ← TSP (Z)
4: end procedure

4.3.1 Adapted Floyd-Warshall Algorithm

In Section 4.1 we met a classical all-pairs shortest path problem in graph G = (V,E),
which can be solved using Floyd-Warshall algorithm (cf. Algorithm 12, where W is
the distance matrix of the graph G) in time |V |3). However, our problem is somewhat

Algorithm 12 Floyd-Warshall
1: procedure Floyd-Warshall(V,W)
2: for all k ∈ V do
3: for all i ∈ V do
4: for all j ∈ V do
5: Wij := min(Wij ,Wik +Wkj)
6: end for
7: end for
8: end for
9: end procedure

more restrictive as V consists of disjoint subsets X and S and we are only interested
in the shortest paths between vertices of S while a path itself can visit an arbitrary
number of vertices in X. This restriction permits us to modify slightly the Floyd-
Warshall algorithm and obtain the following Lemma.

Lemma 4.3.1 Let G = (X∪S,E) be a graph where X∩S = ∅, x = |X| and s = |S|.
Let a S-path be a sequence of edges from E that starts and ends in S but can also
visit vertices in X. Then there exists an algorithm that computes all-pairs shortest
S-path between any pair of u, v ∈ S in time s3 + x3 + s2x + x2s. Considering also
the leading term, this can be up to twice as fast as Floyd-Warshal algorithm.
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S′ X ′

S′′X ′′

Figure 4.2: Each node in the graph represents an arbitrary amount of vertices from a
single set that are arbitrarily interconnected. The edges represent (arbitrarily many)
connections to other such sets.

Proof. We split the graph G into several subgraph components consisting of vertices
either from S or X, and edges between these components. Figure 4.3.1 shows an
example of splitting S and X into components S′ and S′′, and components X ′ and
X ′′ respectively (S = S′ ∪ S′′, X = X ′ ∪ X ′′, where S′ ∩ S′′ = ∅, X ′ ∩ X ′′ = ∅).
To illustrate the proof we use the example from the figure. Although in general S
and X can break in several components, it will be easy to see that the number of
components does not influence neither correctness nor the time complexity of our
algorithm.

Consider the path πuv between nodes u, v ∈ S. It starts and ends in S, but
it can pass through X (cf. Figure 4.3.1). Moreover, it can oscilate between X and
S. Assume that πuv for the first time re-enters S at vertex w ∈ S. Due to the
minimization principle, paths πuw and πwv are also the shortest paths between u
and w, and w and v respectively. Therefore, if we compute these paths first, the
relaxation principle in Floyd-Warshall algorithm will pick up the correct path for
πuv.

Furthermore, let πuw = u→ πab → w, that is path πuw enters X at a and exits
at b. As before πab is also the shortest path between a, b ∈ X, which is completely
in X. Similarly paths u→ πab and πab → w are also the shortest paths between the
respective vertices. Therefore, if we have computed the last two paths, the relaxation
procedure will pick the correct path when computing the shortest path πuw

This brings us to the algorithm in Algorithm 13. We first compute all-pairs
shortest paths (cf. πab) between all vertices in X, which takes x3 time. Next (lines 3-
9), we compute the shortest paths between all nodes a ∈ X and w ∈ S (cf. πab → w),
which takes another x2s time. In lines 10-16 we compute the shortest paths between
all nodes u ∈ S and b ∈ X (cf. u → πab), which takes another xs2 time. The final
call to Floyd-Warshall algorithm on S in time s3 computes the final result as all
possible sub-paths are already computed. The total time of the our algorithm is
x3 + x2s + xs2 + s3 which has extreme 4s3 at x = s. On the other hand the usual
Floyd-Warshall algorithm takes in this case (x+ s)3 = 8s3

.
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u

v

a

b

w

S’ X’

S”X”

Figure 4.3: Each node represents connected component consisting of vertices only
from either X or S, while edges represent (arbitrarily many) connections between
components

Algorithm 13 Adapted Floyd-Warshall Algorithm
1: procedure Adapted(S,X,W)
2: Floyd-Warshall(X,W )
3: for all k ∈ X do
4: for all i ∈ X do
5: for all j ∈ S do
6: Wij := min(Wij ,Wik +Wkj)
7: end for
8: end for
9: end for

10: for all k ∈ X do
11: for all i ∈ S do
12: for all j ∈ S do
13: Wij := min(Wij ,Wik +Wkj)
14: end for
15: end for
16: end for
17: Floyd-Warshall(S,W )
18: end procedure
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4.4 Experiment

For testing we used the real instances of the TVP, which were made from official
tourist maps of cities Koper, Belgrade and Venice. In the Belgrade example two
different cases were considered with a different number of vertices in the graph.
From the library, TSPLIB, we selected two instances of the symmetric TSP and
modified them into TVP instances.

These two instances were modified in such a way that a new connected graph
G′ was constructed. Furthermore, we split V into a set of vertices S and X, such
that |S| = |X| = |V |/2. The degree of vertices was chosen to be 5 inspired by the
real instances. The 5 edges per vertex were chosen randomly, according to a uniform
probability distribution.

Altogether 5 instances were tried out, with different sizes ranging from 120 to 1002
vertices per instance. We compared two methods for solving the TVP. The Naïve
algorithm (cf. Algorithm 10) and the Koper algorithm (cf. Algorithm 11). For solving
the TSP, as a step in both algorithms, we used the Concorde Algorithm, presented
in Section 2.2.5. Furthermore, for solving the APSP, as a part of both algorithms,
we used the Adapted Floyd−Warshall algorithm, presented in Section 4.3.1.

4.5 Evaluation

The results of the experiment are summarized in Table 4.1. Five instances were
tried out, with different sizes, ranging from 120 to 1002 vertices per instance. The
names of these instances are in the first column. The second and the third columns
contain the size of the problem, i.e. the number of vertices in set V and the number
of vertices in set S respectively. The next two columns contain the method and tour
length. Last column shows the quality of the result computed by formula

qA =
lA − lC

lC
, (4.2)

where lC is a length of the tour obtained by Koper algorithm and lA is a length of
the tour obtained by Naïve algorithm. The relative difference is expressed always
in percents. For example, 17.22% difference means that Naïve algorithm performed
17.22% worse than Koper algorithm. The first tested method, the Naïve algorithm,
performed poorly in comparison to the Koper algorithm. The quality differs from
6.52% in the case of Belgrade163 to 354.46% in the case of pr1002 instance. The
difference in the quality is bigger in instances that are more complex.

Although these algorithms are similar in terms of components (both rely on
solving an APSP and TSP), the difference on the quality of the solutions indicates
that there is a gain by using the Koper algorithm. Note also that the running time
for both algorithms is the same.

4.6 Conclusions

The goal of this chapter is to describe a new problem from graph theory, named
the Traveling Visitor Problem. Although the new problem is similar to the Traveling
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Name (V) (S) Methods Tour Cost Difference

Naïve 4738 17.22%

Koper 4042

Naïve 100389 6.52%

Koper 94246

Naïve 122119 8.77%

Koper 112275

Venice 210 72 Naïve 26648 24.24%

Koper 21448

Naïve 921499 249.08%

Koper 263983

Naïve 11818732 354.46%

Koper 2600585

Koper 120 55

Belgrade

163 53

250 90

pr1002 1002 501

lin318 318 159

Table 4.1: Two techniques for solving the Traveling Visitor Problem

Salesman Problem, when we try to solve it with the Naïve algorithm we get solutions
far from optimal. The minimum cost solutions for the TVP instances tested in the
chapter are provided by our Koper algorithm. The tested benchmarks are obtained
from three real instances coming from tourist maps of cities of Koper, Belgrade
and Venice and two modified instances from TSPLIB. In all tested cases the Koper
algorithm outperforms the Naïve algorithm for solving the TVP - quality of solutions
differs from 6.52% to 354.46%.



Chapter 5

Conclusion

The first goal of the Thesis was to investigate influence of grafting a 2-opt based
local searcher into the standard genetic algorithm, for solving the Traveling Salesman
Problem. It is known that genetic algorithms are very successful when implemented
for many NP-hard problems. However, they are much more effective if some specific
knowledge about particular problem is utilized. In our experiment in Chapter 3 we
compared two direct techniques, with our grafted genetic algorithms. Solutions from
Concorde and greedy algorithm were added for better comparison. Quantitative
results on test cases from TSPLIB show that grafted algorithms have advantages.
Even when both components have serious drawbacks, their grafted combinations
exhibit very good behaviour. Results on examples from TSPLIB show that this
method combines good qualities from both methods applied and outperforms each
individual method. Our experiments further show that the best results are obtained
when hybridization occurs in the last generations of the GA. This seems to be in line
with classical meta-heuristic algorithms like simulated annealing, which stop their
diversification in the last iterations. On one hand the less frequent application of
hybridization decreased the average running time of the algorithm from 14.62 sec to
2.78 sec at 100% and 10% hybridization respectively, while on the other hand the
quality of solution on average deteriorated only from 0.21% till 1.40% worse than the
optimal solution. We showed, that even a small hybridization substantially improves
the quality of the result. Moreover, the hybridization in fact does not deteriorate
the running time too much.

The second goal of the Thesis was to describe a new problem from graph theory,
named the Traveling Visitor Problem. Although the new problem is similar to the
Traveling Salesman Problem, when we try to solve it with the Naïve algorithm we
get solutions far from optimal. The minimum cost solutions for the Traveling Visitor
Problem instances tested in the paper are provided by our Koper Algorithm. The
tested benchmarks used come from three real instances made using tourist maps of
cities of Venice, Belgrade and Koper and two modified instances from TSPLIB. In
all tested cases the Koper Algorithm significantly outperforms the Naïve Algorithm
for solving the Traveling Visitor Problem - quality of solutions differs from 6.52% to
354.46%.
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5.1 Hypotheses and Contribution to the Science

In chapter 1 two hipotheses was introduced:

• Hypothesis 1: The method for solving of TSP that is made of two indepen-
dent methods, genetic algorithm and 2-opt heuristic, outperforms each of the
combined methods in terms of the quality of solution.

• Hypothesis 2: The quality of solution of a special method to the problem of
a traveling visitor problem, outperforms algorithms for solving general TSP
problem when they are used for solving traveling visitor problem.

Using a specific methodology, detaily described in Chapter 3, we prove the cor-
rectness of the hypotheses 1. Furthermore, in Chapter 4 we prove the correctness of
the hypotheses 2. Research objective of the thesis is the proof of the hypotheses 1
and 2.

Contributions to the science consist of the following results:

• Construction of the grafted genetic algorithm for solving the traveling salesman
problem.

• Verification that the traveling salesman problem can be successfully solved
using the grafted genetic algorithm.

• Construction of the method for solving the traveling visitor problem.

• Construction of the solutions of the traveling visitor problem for cities of Koper,
Belgrade and Venice.

• Verification that all instances of the traveling visitor problem, which are solved
using the proposed method, represent a very satisfactory solution.

The results of doctoral dissertation represents the contribution to bridging the
gap between theoretical computer science and its application in practice. Also to
better understanding and modeling of real problems in the economy, represented as
the NP-hard problems from graph theory as well as a contribution to the optimization
methods for solving these problems.

The results of this PhD Thesis are published in the following articles:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the 17th International Electrotechnical and Computer
Science Conference, Portoroz, Slovenia (2008), 115–118.

• M. Djordjevic, M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt Algo-
rithm Based Local Searcher Into the Genetic Algorithm, Proceedings of the 9th
WSEAS international conference on Applied informatics and communications,
AIC 2009, Moscow, Russia (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstract
of International Conference on Operations Research, OR 2011, Zurich, Switzer-
land (2011), 130.
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• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011, Dubrovnik, Croatia (2011), 515–520.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and the Koper Algorithm for Solving It, Book of Abstracts of 25th Conference
of European Chapter on Combinatorial Optimization, ECCO 2012, Antalya,
Turkey (2012), 10.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and Algorithms for Solving It, Book of Abstracts of 3rd Student Conference on
Operational Research, SCOR 2012, Nottingham, UK (2012), 26.

• M. Djordjevic, J. Zibert, M. Grgurovic, and A. Brodnik Methods for Solving
the Traveling Visitor Problem, Proceedings of the 1st International Internet
and Business Conference, IBC 2012, Rovinj, Croatia (2012), 174–179.

• M. Djordjevic, M. Grgurovic, and A. Brodnik, Performance Analysis of Par-
tial Use of Local Optimization Operator on Genetic Algorithm for Traveling
Salesman Problem, Business Systems Research, Print ISSN 1847-8344; Online
ISSN 1847-9375, in press.
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Povzetek v slovenskem jeziku

5.2 Uvod

Leta 2007 sem vpisal podiplomski doktorski študij računalništva v Kopru. Iz
Beograda sem prišel z veliko željo spoznati mesto, v katerem sem nameraval živeti
naslednja štiri leta. Mestno jedro mi je bilo takoj všeč, predvsem zaradi številnih
znamenitosti, natančno 55, ki se nahajajo tudi na turističnem zemljevidu Kopra.
Doktorski študij je naporen in ker nisem imel veliko prostega časa, sem se začel
spraševati, kako bi bilo, če bi lahko optimiziral svoj obhod mestnih znamenitosti na
tak način, da bi porabil najmanj možnih korakov in si tako prihranil nekaj časa.
Problem sem poimenoval problem potujočega obiskovalca (angl. Traveling Visitor
Problem, (TVP)).

V zgodnjih 30. letih 20. stoletja, je avstrijski matematik Karl Menger izzval takra-
tno raziskovalno skupnost s problemom, ki ga je bilo treba preučiti z matematičnega
vidika [99]: glasnik želi obiskati vsako mesto s seznama na katerem je n mest, natanko
enkrat in se nato vrniti v svoje mesto, pri čemer so cene potovanj iz mesta i v
mesto j znane vnaprej. Vprašanje je torej, kateri od obhodov je najcenejši? Problem
trgovskega potnika (angl. Traveling Salesman Problem, (TSP)) je formalno definiran
na polnem grafu G = (V,E), kjer je V = {v1, v2, ..., vn} množica vozlišč, E množica
povezav in s cenilno funkcijo c(i, j), ki povezavi (i, j) ∈ E priredi določeno ceno.

TSP, lahko obravnavamo tudi kot problem permutacij. Naj bo Pn množica vseh
permutacij iz množice {1, 2, ..., n}. Potem je problem trgovskega potnika poiskati
π = (π(1), π(2), ..., π(n)) v Pn, za katero velja, da je cπ(n)π(1) +

∑n−1
i=1 cπ(i)π(i+1),

minimalen.
TSP je eden izmed najpomembnejših predstavnikov večje množice problemov,

imenovane kombinatorični optimizacijski problemi [66]. Ker sodi TSP v razred NP-
težkih (angl. NP-Hard) problemov [75], ne poznamo učinkovitega algoritma za TSP.
Natančneje, takšen algoritem obstaja le pod pogojem, da sta razreda P in NP enaka.
S praktičnega vidika to pomeni, da ne poznamo natančnega algoritma za kateri koli
TSP-primer z n vozlišči, ki se obnaša značilno bolje, kot algoritem, ki izračuna vseh
(n− 1)! možnih obhodov ter vrne obhod z najmanjšo ceno.

V praksi lahko za reševanje tega problema uporabimo tudi drugačen pristop.
Določeni TSP-primer, z n vozlišči ima lahko kateri koli obhod, ki poteka skozi vsa
vozlišča n in predstavlja možno rešitev, tj. zgornja meja (angl. upper bound), za
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najnižjo možno ceno. Algoritem, ki v polinomskem času (angl. polynominal time)
konstruira možne rešitve s to zgornjo mejo, se imenuje hevristika [12,120]. Načeloma,
ti algoritmi tvorijo rešitve, vendar brez zagotovila o kakovosti rešitve glede na razliko
med njihovo ceno in optimalno ceno.

Poznamo dve vrsti TSP: simetrični TSP in asimetrični TSP. V simetrični obliki,
znani pod imenom STSP [72, 73, 92, 96], je razdalja med vozliščema i in j enaka
razdalji med vozliščema j in i. V primeru asimetričnega TSP (ATSP) [14,16,18,23],
takšna simetrija ne obstaja. Poleg tega obstaja še vrsta različnih variacij TSP, ki so
opisane in raziskane v literaturi ter predstavljene v doktorski disertaciji v drugem
poglavju. Sledi povzetek nekaterih med njimi.

Gručni TSP (angl. Clustered TSP) [64], ozko-grlni TSP (angl. Bottleneck TSP)-
[62], posplošeni TSP (angl. Generalized TSP) [61,78], problem glasnika (angl. Mes-
senger Problem) [99], ki je znan tudi kot problem izgubljenega prodajalca (angl.
Wondering Salesman Problem) [77], problem zamenjave (angl. The swapping prob-
lem) [2], problem minimalne latentnosti (angl. Minimum Latency Problem) [11],
poznan še kot problem dostavljavca (angl. Delivery Man Problem) [62] ali problem
potujočega mojstra (angl. Traveling Repairman Problem) [52], problem seizmičnih
plovil (angl. Seismic Vessel Problem) [60], ki je posplošitev problema skladiščnega
dvigala (angl. Stacker Crane Problem) [24], problem potujočega turnirja (angl. Trav-
eling Tournament Problem) [41], problem lokacije objekta (angl. Facility Location
Problem) [40]; in končno problem potujočega obiskovalca, ki je podrobno opisan,
raziskan in razrešen v doktorski disertaciji, v poglavju 4. Ta problem predhodno ni
bil naveden v kakršni koli literaturi.

Prvi koraki v reševanju TSP so bili klasični poskusi. Te metode so sestavljene iz
natančnih in hevrističnih algoritmov. Natančne metode, kot so presek ravnine (angl.
cutting planes) [31], razvejitev in povezovanje (angl. branch and bound) [26,31], lahko
optimalno rešijo relativno majhne probleme (v odvisnosti od velikosti n), medtem ko
nam dajo metode, kot so različne variante algoritma Lin-Kernighan [6, 45, 69, 78] in
tehnike Concorde [3–5] relativno dobre rezultate, tudi za večje probleme. Posamezne
algoritme, zasnovane na požrešnih principih, kot sta najbližji sosed (angl. nearest
neigbour) [62] in vpeto drevo (angl. spanning tree) [68], se prav tako uporablja za
reševanje TSP.

Natančne metode za reševanje TSP rezultirajo z eksponentnimi računskimi kom-
pleksnostmi, tako da so v izogib obstoječim slabostim potrebne nove metode. Te
vključujejo različne principe optimizacijskih tehnik, naravno orientirane optimizaci-
jske algoritme, populacijsko orientirane optimizacijske algoritme, ter druge. Različna
bitja in naravni sistemi, ki se razvijajo v naravi, so zanimivi in dragoceni izvori
navdiha, tako za raziskovanje ter ustvarjanje novih sistemov in algoritmov za reše-
vanje TSP, kot tudi njegovih variacij. Nekatere od teh metod so predstavljene v
doktorski disertaciji v poglavju 2, npr.:

evolutivno računanje (angl. Evolutionary Computation) [100, 105, 126, 135], ge-
netski algoritmi (angl. Genetic Algorithms) [42, 50, 51, 102, 108, 116, 125, 129, 133,
134,138,139], memetični algoritmi (angl. Memetic Algorithms) [61, 86–88,103,112],
sistemi mravelj (angl. Ant Systems) [38], simulirano ohlajanje (angl. Simulated
Annealing) [83], in nazadnje cepljeni genetski algoritmi (angl. Grafted Genetic Algo-
rithms) [34], [37], [35], [36], ki predstavljajo vrsto hibridnih genetskih algoritmov in
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so raziskani, podrobno opisani ter demonstrirani v doktorski disertaciji, natančneje
v poglavju 3.

5.3 Vsebina disertacije

Doktorska disertacija po Pravilniku o pripravi in zagovoru doktorske disertacije na
Univerzi na Primorskem, vsebuje več poglavij:

• Zahvala

• Povzetek

• Kazalo vsebine

• Poglavje 1 - Uvod

• Poglavje 2 - Ozadje

– 2.1 Problem trgovskega potnika
– 2.2 Optimizacijski algoritmi

• Poglavje 3 - Cepljeni genetski algoritmi

• Poglavje 4 - Problem potujočega obiskovalca

• Zaključek

• Literatura

• Kazalo

• Izjava

V poglavju Ozadje smo predstavili osnovne pojme trgovskega potnika in opti-
mizacijskih algoritmov, s pomočjo katerih so lahko nadaljnja poglavja disertacije
postala razumljiva tudi širšemu krogu bralcev. Preostali poglavji so namenjeni pred-
stavitvi doseženih ciljev disertacije. Poglavja so razdeljena na več podpoglavij.

V doktorski disertaciji sta obdelani dve temi s področja teoretičnega računal-
ništva. Optimizacijsko-hevristična metoda imenovana cepljeni genetski algoritmi in
kombinatorično-optimizacijski problem, imenovan tudi problem potujočega obisko-
valca. Cilja doktorske disertacije sta dva:

Cepljeni genetski algoritmi: cilj je pokazati kakovost dobljenih rešitev in hitrost
izvajanja cepljenega genetskega algoritma, ko se ga uporablja za probleme simetričnih
TSP-jev, ki so na voljo na svetovnem spletu, v obliki splošno priznanih ocenjevalnih
primerov (angl. benchmarks).

Problem potujočega obiskovalca: cilj je opisati in definirati problem iz realnega
življenja, ustvariti realne primere za mesta v okolici in rešiti primere problemov
z uporabo nove metode ter znanih metod, ki bodo skupaj prikazane v doktorski
disertaciji. Raziskovalni cilj disertacije je dokazovati spodaj navedeni hipotezi 1 in
2.
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Hipoteza 1: metoda za reševanje TSP, sestavljena iz dveh neodvisnih metod,
genetskega algoritma in 2-opt hevristike, združuje kakovosti obeh metod na takšen
način, da ju znatno prekaša, glede na kakovost rešitve.

Hipoteza 2: glede na kakovost rešitve posebna metoda za reševanje problema po-
tujočega obiskovalca, prekaša splošne algoritme za reševanje problema trgovskega
potnika, ki jih uporabimo za reševanje problema potujočega obiskovalca.

5.4 Raziskava

5.4.1 Cepljeni genetski algoritmi

Botanično cepljenje je postopek, pri katerem je tkivo prve rastline pritrjeno na
tkivo druge rastline. Cepljenje lahko zmanjša čas cvetenja in skrajša čas rejskega
programa. Lokalni iskalec je razširitev konvencionalnega genetskega algoritma, saj
ne obstaja potreba po uporabi komponent genetskega algoritma. To omogoča op-
timizacijo posameznih genomov, izven evolucijskega procesa. V našem algoritmu
se po izvedeni rekombinaciji (vrstica 7 v algoritmu 9), uporablja lokalnega iskalca
za optimizacijo genoma potomcev (vrstica 8 v algoritmu 9). Zaradi uporabe omen-
jene zunanje optimizacijske metode, genetski algoritem ni več čist, zato govorimo
o cepljenem genetskem algoritmu [34], [37]. Omenjena oblika optimizacije se izvaja
lokalno ter spreminja genom s pomočjo hevrističnega spreminjanja rešitve. 2-opt
lokalni iskalec 2.2.3 je lokalna optimizacijska metoda za TSP, ki je bila vcepljena
v standardni genetski algoritem (vrstica 8 v algoritmu 9). Ta metoda, izvaja 2-
opt hevristiko, ki izmenjuje povezave grafa z namenom zmanjšati dolžino obhoda.
Postopek izmenjave sestoji iz odstranjevanja dveh povezav iz trenutnega obhoda in
ponovnega povezovanja na najboljši možen način, glej figuro 2.1.

V opravljenem poskusu smo testirali vpliv cepljenja algoritma lokalnega iska-
lca z genetskim algoritmom za reševanje problema trgovskega potnika. Za testi-
ranje naše strategije in njeno primerjavo z ostalimi rešitvami, smo uporabili primere
simetričnega problema trgovskega potnika, ki so na voljo na spletu, v knjižnici
TSPLIB [121]. Uporabili smo 20 primerov, z različno kompleksnostjo in obsegom,
od 14 do 150 mest, tabela 3.1. Našo metodo (cepljeni genetski algoritem), katere
predstavnika sta algoritma GGAemx in GGAdpx, smo primerjali s štirimi drugimi
metodami. Za zgornjo mejo kakovosti rešitve smo uporabili požrešno hevristiko
(angl. Greedy Heuristic 2.2.2), za spodnjo mejo globalni minimum, pridobljen s
Concorde 2.2.5. Nato smo primerjali našo cepljeno metodo z 2-opt in genetskim
algoritmom.

Rezultati eksperimenta so predstavljeni v tabeli 3.1. Šesti stolpec v tabeli prika-
zuje rešitve našega cepljenega algoritma, ki je bil programiran s pomočjo križanja
povezav (angl. edge map crossover 2.2.4), kot operator za rekombinacijo (GGAemx).

V sedemnajstih primerih od dvajsetih obravnavanih je bila najdena optimalna
rešitev, preostali trije primeri odstopajo od optimalne rešitve za 0,01; 0,10 in 0,22
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odstotka. Rešitve so bile najdene hitro, porabili smo od 0,6 do 15,2 sekunde, v rela-
tivno majhnem številu iteracij. Sedmi stolpec v tabeli 3.1 pripada našemu cepljen-
emu genetskemu algoritmu, ki vsebuje križanje ohranjanja razdalje (angl. distance
preserving crossover 2.2.4), kot operator za rekombinacijo (GGAdpx). V enajstih
obravnavanih primerih od dvajsetih je bila najdena optimalna rešitev, v preostalih
devetih primerih so odstopanja od optimalne rešitve od 0,13 do 0,32 odstotka. V
primerjavi z GGAemx, sta čas izvajanja in število generacij GGAdpx nekoliko man-
jša, posebej v nižjem predelu tabele, ki predstavlja kompleksnejše primere.

Kvantitativni rezultati na testnih primerih iz TSPLIB kažejo, da imata cepljena
algoritma, GGAemx in GGAdpx prednosti. Kljub številnim pomanjkljivostim njunih
komponent, se njune kombinacije cepljenja obnesejo zelo dobro. Rezultati primerov
iz TSPLIB kažejo, da omenjena metoda cepljenja združuje dobre lastnosti iz obeh
uporabljenih metod in občutno prekaša vsako izmed njiju.

5.4.2 Problem potujocega obiskovalca

Obiskovalci so prispeli v hotel v neko nepoznano mesto, z željo, da bi obiskali
vse mestne zanimivosti natanko enkrat in se po ogledu vrnili v hotel. Na ogled so se
odpravili peš: - po ulicah, sprehajalnih področjih in poteh za pešce. Cilj je skrajšati
obiskovalčevo pot.

Problem potujočega obiskovalca je izpeljan iz problema trgovskega potnika, pri
čemer velja pravilo, da obiskovalec izbira samo med potmi, ki jih je možno prehoditi.
To pomeni, da so najkrajše razdalje [56, 112], kot jih poznamo v evklidskem TSP,
v našem primeru napačne. Obiskovalci uporabljajo sprehajalne poti in območja za
pešce, različnih dolžin. Te omejitve določajo težo povezav, ki povezujejo vozlišča v
grafu.

Definicija TVP: Imamo graf G = (V,E, c), kjer je množica vozlišč V = S ∪ X
in S ∩X = ∅, pri čemer so S zanimivosti mesta in X križišča, E množica povezav
ter c cena potovanja. Cilj je poiskati najkrajši zaprti sprehod (angl. closed walk,
poglavje 2.1.1) skozi vsa vozlišča S (glede na c) v grafu G, pri čemer se lahko spre-
hodimo skozi X.

Prva predlagana metoda za reševanje problema potujočega obiskovalca je naivni
algoritem (angl. Naïve Algorithm), prikazan v algoritmu 10. V prvi vrstici psev-
dokode, lahko razberemo naslednje parametre: S pripada zanimivim lokacijam v
mestu, X križiščem, E množici povezav, W pa predstavlja matriko povezav grafa
G, (S ∪ X) × (S ∪ X). V prvem koraku algoritma je problem potujočega obisko-
valca rešen kot primer problema trgovskega potnika. V naslednjem koraku izde-
lamo iz matrike povezav W matriko povezav Z, dimenzij (S × S), ki predstavlja
rešitev problema najkrajših poti vseh parov (angl. All-Pairs Shortest Paths Problem
(APSP), poglavje 2.1.5). Na koncu, v zanki (od vrstice 6 do 8) izračunamo skupno
ceno obhoda za TVP. Druga predlagana metoda za reševanje problema potujočega
obiskovalca je algoritem Koper (angl. Koper Algorithm), prikazan v algoritmu 11.
Prva vrstica psevdokode vsebuje enake parametre kot naivni algoritem. V prvem ko-
raku poiščemo najkrajše poti med vsemi pari vozlišč množice S v grafu G. Vhodno
matriko razdalj označimo z W , izhodno matriko razdalj z Z. V naslednjem koraku,
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rešimo problem trgovskega potnika za matriko razdalj Z. Poleg tega smo dobili π,
ki je rešitev za problem potujočega obiskovalca.

Za testiranje naše strategije smo uporabili primere problema potujočega obisko-
valca, ki smo jih izdelali na osnovi uradnih turističnih zemljevidov treh mest, Kopra,
Beograda in Benetk. Za Beograd smo izdelali primera, ki se razlikujeta po velikosti
problema, oziroma po številu vozlišč v grafu. V javno dostopni knjižnici, TSPLIB,
smo izbrali, spremenili in testirali primera problema simetričnega trgovskega pot-
nika. Izvedli smo poskuse za 5 primerov, z različnimi velikostmi, ki znašajo od 120
do 1002 vozlišč: za posamezen primer.

Za reševanje problema potujočega obiskovalca smo primerjali dve metodi. Prva
metoda je že omenjeni naivni algoritem, prikazan v algoritmu 10, druga metoda je
algoritem Koper, prikazan v algoritmu 11. Za reševanje TSP, ki je eden izmed korakov
pri obeh algoritmih, smo uporabili algoritem Concorde, opisan v poglavju 2.2.5. Za
reševanje problema najkrajše poti vseh parov pa smo uporabili prilagojeni Floyd-
Warshallov algoritem, ki je bil prikazan znotraj poglavja 4.3.1.

Rezultati poskusa so predstavljeni v tabeli 4.1. Peti stolpec tabele 4.1, pred-
stavlja dolžino sprehoda (cena rešitve, ki smo jo dobili pri poskusu). Stolpec se
imenuje cena sprehoda (angl. tour cost). V vseh šestih primerih so najkrajši spre-
hodi, pridobljeni z algoritmom Koper. Zadnji stolpec v tabeli 4.1, kaže razliko med
uporabljenimi metodami, prikazano v odstotkih. Prva metoda, naivni algoritem, se
je odrezala veliko slabše od algoritma Koper. Kakovost rešitev variira v intervalu od
6,52 odstotka (v primeru Belgrade163) do 354,46 odstotka (v primeru pr1002).

Namen tega raziskovanja je bil opisati in rešiti nov problem v teoriji grafov,
imenovan problem potujočega obiskovalca. Čeprav je omenjeni problem podoben
dobro znanemu problemu trgovskega potnika, so rezultati daleč od optimalnih, ko
ga skušamo rešiti z naivnim algoritmom. V vseh testiranih primerih problema potu-
jočega obiskovalca, algoritem Koper prekaša naivni algoritem.

5.5 Metodologija

Glavno orodje za opis in definicijo problema potujočega obiskovalca je teorija grafov.
Za realistično predstavitev vozlišč našega grafa, kot tudi povezav ter cen, je upora-
bljen geografski informacijski sistem Google Earth, čigar podatkovno bazo smo upora-
bili za pridobitev mestnih znamenitosti, križišč in sprehajalnih poti. Pomembno vl-
ogo za dokazovanje hipoteze 1 ima platforma za raziskovanje genetskih algoritmov
"EA Visualizer" [15], aplikacija, napisana v programskem jeziku Java.

Za dokazovanje hipoteze 2 smo uporabili Floyd-Warshallov algoritem [27] in ga
ustrezno nadgradili za iskanje najkrajših poti med vsemi pari vozlišč grafa G =
(V,E, c). Uporabili smo tudi znane optimizacijske metode za reševanje simetričnega
problema trgovskega potnika, presek-ravnine [113,115], na osnovi katerega temeljijo
metode Concorde [3–5] in hevristične metode algoritma Lin-Kernighan [6,45,69,78].
Obe aplikaciji sta pisani v programskem jeziku AnsiC. Poleg tega smo uporabili za
dokazovanje hipoteze 2 znanje iz matematičnih modelov, poznanih kot problem lin-
earnega programiranja (angl. linear programming problems) [22,131], in tudi metode
simpleks (angl. simplex methods) [31].
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5.6 Doprinos k znanosti

Doprinos k znanosti predstavljajo naslednji rezultati:

• Izdelava cepljenega genetskega algoritma za reševanje problema trgovskega pot-
nika.

• Potrditev, da problem trgovskega potnika lahko uspešno rešimo z uporabo
cepljenega genetskega algoritma.

• Izdelava posebne metode za reševanje problema potujočega obiskovalca.

• Izdelava realnih primerov problema potujočega obiskovalca za mesta Koper,
Beograd in Benetke.

• Potrditev da predstavlja vsak primer problema potujočega obiskovalca, ki je
rešen s posebno metodo, zelo zadovoljivo rešitev.

Rezultati doktorske disertacije predstavljajo doprinos k premoščanju razlik med
teoretičnim računalništvom in njegovo uporabo v praksi: k boljšemu razumevanju in
modeliranju realnih problemov s področja gospodarstva, predstavljenih kot NP-težki
problemi v teoriji grafov, kot tudi doprinos k optimizacijskim metodam za reševanje
omenjenih problemov.

Naj omenimo še, da so rezultati disertacije objavljeni v naslednjih znanstvenih
člankih:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the 17th International Electrotechnical and Computer
Science Conference, Portoroz, Slovenia (2008), 115–118.

• M. Djordjevic, M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt Algo-
rithm Based Local Searcher Into the Genetic Algorithm, Proceedings of the 9th
WSEAS international conference on Applied informatics and communications,
AIC 2009, Moscow, Russia (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstract
of International Conference on Operations Research, OR 2011, Zurich, Switzer-
land (2011), 130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011, Dubrovnik, Croatia (2011), 515–520.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and the Koper Algorithm for Solving It, Book of Abstracts of 25th Conference
of European Chapter on Combinatorial Optimization, ECCO 2012, Antalya,
Turkey (2012), 10.

• M. Djordjevic, M. Grgurovic and A. Brodnik, The Traveling Visitor Problem
and Algorithms for Solving It, Book of Abstracts of 3rd Student Conference on
Operational Research, SCOR 2012, Nottingham, UK (2012), 26.
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• M. Djordjevic, J. Zibert, M. Grgurovic, and A. Brodnik, Methods for Solving
the Traveling Visitor Problem, Proceedings of the 1st International Internet
and Business Conference, IBC 2012, Rovinj, Croatia (2012), 174–179.

• M. Djordjevic, M. Grgurovic, and A. Brodnik, Performance Analysis of Par-
tial Use of Local Optimization Operator on Genetic Algorithm for Traveling
Salesman Problem, Business Systems Research, Print ISSN 1847-8344; Online
ISSN 1847-9375, in press.
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