
Impact of Grafting a 2-opt Algorithm Based Local Searcher
into the Genetic Algorithm

MILAN DJORDJEVIC
FAMNIT/PINT

University of Primorska Koper
Glagoljaska 8, Koper

SLOVENIA
milan.djordjevic@student.upr.si

Abstract: - This paper examines the impact of grafting a 2-opt based local searcher into the standard genetic
algorithm for solving the Travelling Salesman Problem with Euclidean distance. Pure genetic algorithms are
known to be rather slow, while 2-opt search applied to the Travelling Salesman Problem quickly gives results
that are far from optimal. We propose a strategy to graft a 2-opt local searcher into genetic algorithm, after
recombination and mutation, to optimize each offspring’s genomes. Genetic algorithm provides new search
areas, while 2-opt improves convergence. We tested our algorithm on examples from TSPLIB and proved that
this method combines good qualities from both applied methods, significantly over performing each of them.

Key-Words: - Genetic Algorithms (GA), Grafted Genetic Algorithm (GGA), Travelling Salesman Problem
(TSP), Memetic algorithms (MA).

to premature convergence in local optimum
which may be far from the global one. Mutation
operator contributes to restoring lost regions of
the search space by random changing of some
genes. The components of the genetic algorithm
software system are: Genotype, Fitness function,
Recombinator, Selector, Mater, Replacer,
Terminator, and in our system a Local searcher
which is new extended component.

In the traveling salesman problem (TSP) a set
{C1, C2, ⋯ CN) of cities is considered and for each
pair {Ci, Cj} of distinct cities a distance dCj, Ci is
given. The goal is to find an ordering π of the cities
that minimizes the quantity

i=1N-1d(Cπi, Cπi+1)+dCπN , Cπ1. (1)

This quantity is referred to as the tour length
since it is the length of the tour a salesman would
make when visiting the cities in the order specified
by the permutation, returning at the end to the initial
city. We will concentrate in this paper on the
symmetric TSP in which the distances satisfy dCi,
Cj =dCj, Ci for 1≤i, j≤N and more specificaly to the
Euclidean distance. While the TSP is known to be
NP-hard, even when many restrictions are applied,
the case with Euclidean distance is well researched
and there are many excellent algorithms which
perform well even on very large cases.

1 Introduction
Genetic Algorithms (GA) use some mechanisms
inspired by biological evolution [1]. They are
applied on a finite set of individuals called
population. Each individual in population
represents one of the feasible solutions of the
search space. Function between genetic codes
and the search space is called encoding and can
be binary or over some alphabet of higher
cardinality. Good choice of encoding is a basic
condition for successful application of genetic
algorithm. Each individual in the population is
assigned with the value called fitness. Fitness
represents a relative indicator of quality of an
individual compared to other individuals in the
population. Selection operator chooses
individuals from the current population and
takes the ones that are transferred to the next
generation. Thereby, individuals with better
fitness are more likely to survive in the
population’s next generation. Crossover
operator combines parts of genetic code of the
individuals (parents) and that process brings
codes of new individuals (offspring). Such mix
of genetic material enables that well-fitted
individuals or their relatively good genes give
even better offspring. By successive application
of selection and crossover, the diversity of
genetic material can be decreased which leads

The Greedy algorithm normally keeps within 15-
20% of the Held-Karp lower bound.

Grafted genetic algorithm. Grafting in botanic is
when the tissues of one plant are affixed to the
tissues of another. To speed maturity of hybrids in
fruit tree breeding programs, hybrid seedlings may
take ten or more years to flower and fruit on their
own roots. Grafting can reduce the time to flowering
and shorten the breeding program.

Local Searcher is an extension to the
conventional genetic algorithm as it need not make
use of genetic components. It facilitates the
optimization of individual genomes outside the
evolution process. There are many implementations
of local searchers [4], [5], some even in hardware
[6]. In our algorithm, after both the Recombination
and the Mutation have been applied, a Local
Searcher is used to optimize every single offspring
genome. Because of the usage of such external
optimizer the genetic algorithm is no longer “pure”
and therefore we then speak of a grafted genetic
algorithm. This form of optimization is of a local
kind. It alters the genome by heuristically changing
the solution. When approximating a TSP instance, a
2-opt local optimization technique is applied to
make modifications to a genome so as to create
better genomes at a higher rate. This are very
needed because the evolution process can be quite
slow with respect to the desired results. Furthermore
it has always been the case in optimization that
incorporating problem specific knowledge (not only
through local optimizations, but also in defining the
evolutionary operators) is required to gain better
results.

2 Grafted GA for TSP
A genome represents a potential solution to a
problem. How the solution information is coded
within a genome, is determined by the Genotype.
TSP Numbered List is a representation of a tour in
the TSP by means of a list in which the locations are
identified by numbers.

The fitness function (FF) has a specific task in a
genetic algorithm and plays a specific role in terms
of the optimization problem description. The fitness
function rates the genomes and therefore the
solutions according to their fitness. Solution for our
TSP problem is a Hamiltonian cycle and the fitness
value is the sum of the weights of the edges
contained in the cycle. The fitness values are then
rated better when they are smaller. The fitness
function defines a mapping from the solution space
to the real number and it plays a role of the
environment in the optimization problem and holds

Genetic algorithms have been successfully applied
to the TSP, but for restricted versions of the TSP,
such as one with the Euclidean distance, they are
very slow in convergence and more efficient
methods are known [2].

2-opt is a simple local search algorithm for solving
the Travelling Salesman Problem. The main idea
behind it is to take a route that crosses over itself
and reorder it so that it does not. The basic step of
2-opt is to delete two edges from a tour and
reconnect the remaining fragments of the tour by
adding two new edges. Once we choose the two
edges to delete, we do not have a choice about
which edges to add – there is only one way to add
new edges that results in a valid tour. The 2-opt
algorithm repeatedly looks for 2-opt moves that
decrease the cost of the tour. A 2-opt move
decreases the cost of a tour when the sum of the
lengths of the two deleted edges is greater than the
sum of the lengths of the two deleted edges. A 2-opt
move is the same as inverting a subsequence of
cities in the tour.

Here is pseudcode for the 2-opt local search
algorithm:

current_tour := create_random_initial_tour()
repeat

modified_tour := apply_2opt_move(current_tour)
if length(modified_tour) < length(current_tour)

then current_tour := modified_tour
until no further improvement or a specified number
of iterations

Although the 2-opt algorithm performs well and can
be applied to Traveling Salesman Problems with
many cities [3], it has a serious drawback since
it can quickly become stuck in local minima.

The Greedy Heuristic gradually constructs a tour
by repeatedly selecting the shortest edge and adding
it to the tour as long as it doesn’t create a cycle with
less than N edges, or increases the degree of any
node to more than 2. The same edge must not be
added twice. The running time for this heuristic is O
(n2log2(n)) and the pseudo code is:

1. Sort all edges.

2. Select the shortest edge and add it to our tour if
it doesn’t violate any of the above constraints.

3. Do we have N edges in our tour? If not, repeat
step 2.

tournament size – 2. The Random Mater is like a
simple way of mating parents. It mates the parents
as enumerated in the population at random using the
mating size to create groups until no more groups
can be created. The random behaviour prohibits the
creation of the same groups of parents over and over
again. Parameters programmed: Grouping size – 2.
The new offspring only replacer is the
implementation of the classical replacement strategy
that simply only allows the offspring to survive.
Thus the genomes from the next generation replace
the entire current population. This is the
replacement strategy that will suffice for most
genetic algorithms. The equality terminator four all
equal genomes, implements the termination
condition specifying that the genetic algorithm
should terminate when all genomes in the
population are identical-all equal genomes.

The Local Searcher is an extension to the
conventional genetic algorithm as it need not make
use of genetic operators. It facilitates the
optimization of individual genomes outside the
evolution process. After both the Recombination
and the Mutation have been applied, a Local
Searcher is used to optimize every single offspring
genome. The Local Searcher has no further
knowledge on the execution of the genetic algorithm
in the larger setting. The system will provide it with
the genome it needs to locally optimize when
needed. Fig. 1 presents the pseudo code for the
algorithm.

t=0
initialize(P(t))
evaluate(P(t))
while(not terminate(P(t))) do

sel=select(P(t))
mat=mate(sel)
rec=for each mated collection m∈mat do localsearch(l)
loc=for each genome g in each recombined collection

r∈re do local search(l)
rep=replace(loc, P(t))
P(t+1)=select(rep)
evaluate(P(t+1))
t=t+1

Figure 1 Algorithm Code

The 2-opt Hybrid searcher is a local optimizer
for the TSP that has been grafted into the standard
genetic algorithm. This local optimizer performs the
well known 2-opt Heuristic that exchanges edges to
reduce the length of a tour. An exchange step
consists of removing two edges from the current
tour and reconnecting the resulting two paths in the
best possible way. (Fig. 2)

information on the coordinates of the locations or
the distances between them. For each location it`s
coordinates are stored within this FF, these locations
are in the two dimensional space of real numbers.

Edge map recombination makes use of a so
called edge map. This edge map is a table in which
each location is placed. For each location there is a
list in which the neighbouring location are listed if
this location within the two parents. Recombination
is then established as follows:

1. Choose the first location of one of both parents
to be the current location.

2. Remove the current location from the edge map
lists.

3. If the current location still has remaining edges,
go to step 4, otherwise go to step 5.

4. Choose the new current location from the edge
map lists of the current location as the one with
the shortest edge map list.

5. If there are remaining locations, chooser the one
with the shortest edge map list to be the current
location and return to step 2.

Example:

Parents: 1-2-3-4-5-6; 2-4-3-1-5-6

Edge map: 1) 2 6 3 5; 2) 1 3 4 6; 3) 2 4 1; 4) 3 5 2;
5) 4 6 1; 6) 1 5 2 6

1. Random choice: 2.
2. Next candidates: 1 3 4 6, choose from 3 4 6

(same #edges), choose 3.
3. Next candidates: 1 4 (edge list 4 < edge list

1), choose 4.
4. Next candidate: 5, choose 5.
5. Next candidate: 1 6 (tie breaking) choose 1
6. Next candidate; 6, choose 6.

Offspring:
2-3-4-5-1-6

Tournament Selector places groups of genomes
from the population together, creating the groups
from top to bottom with respect to the enumerative
ordering of the genomes in the population and
selects the best of the genomes within this group
(the winner of the tournament). This is repeated
until the required amount of genomes is selected.
Parameters programmed: Selection size – 400,

processor. In this research absolute times were not
important, we were only intersted in relative
performance of tested algorithms.

4 Results
All the results are summarized in Table 1. As
mentioned before, 14 well known cases from
TSPLIB were used for testing. The names of these
cases are in the first column and the name always
contains the size of the problem, i.e. the number of
cities (which are from 14 to 99).

The last two columns are exact solutions (global
minima) obtained by Concorde, together with
execution times. Well known problem with
moderate sized examples and tools to get optimal
solutions were selected since the goal of this
research is not to improve solutions for difficult
problems but to compare and quantitatively examine
the effects of grafting local searches (in this case 2-
opt based) to standard genetic algorithm. Such
knowledge can be used to fine tune and calibrate
hybrid system that can then be used on large cases.
These last two columns are used as a reference for
all other tests.

The second column in Table 1 represents lower
bond for the quality of solution. It is a simple
Greedy Heuristic described in Section 1. It is fast,
but very unsophisticated and any reasonable
algorithm should do better than that. The Greedy
Heuristic gives results that are about 12% (except
for some very small cases) worse than the optimal
solution. The column titled quality shows by how
many percent is the solution for this algorithm
worse than the optimal solution. 0% in this column
means that the algorithm found the best solution.

The third column in the Table 1 corresponds to
the pure 2-opt algorithm. As expected, it also gives
quick but far from optimal solutions. It quickly finds
a local minimum, but is unable to broaden the
search to find another local minimum. However, 2-
opt algorithm is superior to Greedy algorithm, the
quality of the solution, with the same running time,
is on average about 6% worse than optimal.

The fourth column in the Table 1 corresponds to
pure Genetic Algorithm. The running time, as
expected, is significantly increased. While our GGA
algorithm reached optimal solution (the same time
was allowed to previous two quick algorithms)
below one second or few seconds (0.6 to 13
seconds), the running time for pure genetic
algorithm was from 3.4 seconds to 100 seconds
which was a time-limit. In 6 out of 14 cases the
optimal solution was not found within that time
limit, but in 8 cases optimal solution was found and

Figure 2 Exchange step of 2-opt algorithm

The following figure (Fig. 3) gives an example of an
application of the 2-opt heuristic to a two
dimensional geometric TSP:

Figure 3 Example of an application of the 2opt to
the TSP

3 Tests
For testing our strategy and comparing it to other
solutions we used all the instances of symmetric
traveling salesman problem which can be found on
TSPLIB [7] that have less than 100 nodes. We
deliberately used well known problem (TSP) and
relatively small instances for which best solutions
are known since the goal of this research is not to
find the better algorithm for the symmetric TSP, but
rather to compare on well controlled environment
impact of grafting genetic algorithm. Altogether 14
instances have been tried out, with different
complexity and range from 14 to 99 cities per
instance.

We compared our method (grafted genetic
algorithm – GGA) with four other methods. As the
lower bound for the quality of solution we used
above mentioned Greedy Heuristic. For the upper
bound for the quality of solution we used exact
solutions, global minima, obtained by Concorde.
Then we compared our grafted method with pure 2-
opt algorithm and pure genetic algorithm (GA).

For Greedy Heuristic and pure 2-opt Heuristic
we limited running time to the time needed by our
GGA to reach optimal solution. All tests were
conducted on laptop computer with AMD 2GHz

algorithm. In all 14 considered cases optimal
solution was found. It was found in relatively few
generations and very fast. Execution time was 0.6 to
13 seconds. It shows that grafting introduces new
quality and gives results much better than any of its
components.

middle column indicates in which generation that
happened. For 6 cases where optimal solution was
not found, the quality of found solution is expressed
as for previous cases in percents above the optimal
solution.

The most important is the fifth column (in red
color). It describes results obtained by our grafted

Table 1: Five techniques for solving Euclidean TSP

include measuring the optimal blend of two
components for larger test cases.

References:
[1] J. H. Holland, Adaptation in Natural and

Artificial Systems , University of Michigan
Press Publishing House, 1975.

[2] Concorde TSP Solver softvare, William Cook
http://www.tsp.gatech.edu/concorde.html

[3] Engels C, Manthey B: Average-case
approximation ratio of the 2-opt algorithm for
the TSP, Operations Research Letters, Volume
37, Issue 2, 2009, pp. 83-84

[4] Weiqi Li: Attractor of Local Search Space in
the Travelling Salesman, WSEAS Transactions
on Systems, Issue 3, Vol. 3, May 2004, pp
1114-1119

[5] Jian L, Peng C, Zhiming L: Solving Traveling
Salesman Problems by Genetic Differential
Evolution with Local Search, Workshop On
Power Electronics And Intelligent

5 Conclusion
The goal of this paper was to investigate the impact
of grafting a 2-opt based local searcher into the
standard genetic algorithm for solving the
Travelling Salesman Problem with Euclidean
distance. It is known that genetic algorithms are
very successful when implemented for many NP-
hard problems. However, they are much more
effective if some specific knowledge about
particular problem is utilized. The TSP is well
researched problem with many such improvements,
especially when restricted version of the problem
with Euclidean distance is considered. In that
controlled environment we compared two pure
techniques, genetic algorithm and 2-opt algorithm
with our grafted genetic algorithm. Exact solution
from Concorde and lower bound on quality, Greedy
algorithm were added for better comparison.
Quantitative results on test cases from TSPLIB
show that grafted algorithm has new quality. Even
when both components have serious drawbacks,
their grafted combination exhibits excellent
behaviour. Further calibration of this system will

Transportation System Proceedings, 2008, pp.
454-457

[6] TSPLIB library of sample instances for the TSP
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/
tsplib.html

