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Abstract: - This paper examines the impact of grafting a 2-opt based local searcher into the standard genetic
algorithm for solving the Travelling Salesman Problem with Euclidean distance. Pure genetic algorithms are 
known to be rather slow, while 2-opt search applied to the Travelling Salesman Problem quickly gives results 
that are far from optimal. We propose a strategy to graft a 2-opt local searcher into genetic algorithm, after 
recombination and mutation, to optimize each offspring’s genomes. Genetic algorithm provides new search 
areas, while 2-opt improves convergence. We tested our algorithm on examples from TSPLIB and proved that 
this method combines good qualities from both applied methods, significantly over performing each of them.
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to premature convergence in local optimum 
which may be far from the global one. Mutation 
operator contributes to restoring lost regions of 
the search space by random changing of some 
genes. The components of the genetic algorithm 
software system are: Genotype, Fitness function, 
Recombinator, Selector, Mater, Replacer, 
Terminator, and in our system a Local searcher
which is new extended component. 

In the traveling salesman problem (TSP) a set
{C1, C2, ⋯ CN) of cities is considered and for each 
pair {Ci, Cj} of distinct cities a distance dCj, Ci is 
given. The goal is to find an ordering π of the cities 
that minimizes the quantity

i=1N-1d(Cπi,   Cπi+1)+dCπN , Cπ1. (1)

This quantity is referred to as the tour length
since it is the length of the tour a salesman would 
make when visiting the cities in the order specified 
by the permutation, returning at the end to the initial 
city. We will concentrate in this paper on the
symmetric TSP in which the distances satisfy dCi, 
Cj =dCj, Ci for 1≤i, j≤N and more specificaly to the 
Euclidean distance. While the TSP is known to be 
NP-hard, even when many restrictions are applied, 
the case with Euclidean distance is well researched 
and there are many excellent algorithms which 
perform well even on very large cases.

1 Introduction
Genetic Algorithms (GA) use some mechanisms 
inspired by biological evolution [1]. They are 
applied on a finite set of individuals called 
population. Each individual in population 
represents one of the feasible solutions of the 
search space. Function between genetic codes 
and the search space is called encoding and can 
be binary or over some alphabet of higher 
cardinality. Good choice of encoding is a basic 
condition for successful application of genetic 
algorithm. Each individual in the population is 
assigned with the value called fitness. Fitness 
represents a relative indicator of quality of an 
individual compared to other individuals in the 
population. Selection operator chooses 
individuals from the current population and 
takes the ones that are transferred to the next 
generation. Thereby, individuals with better 
fitness are more likely to survive in the 
population’s next generation. Crossover 
operator combines parts of genetic code of the 
individuals (parents) and that process brings 
codes of new individuals (offspring). Such mix 
of genetic material enables that well-fitted 
individuals or their relatively good genes give 
even better offspring. By successive application 
of selection and crossover, the diversity of 
genetic material can be decreased which leads 



The Greedy algorithm normally keeps within 15-
20% of the Held-Karp lower bound.

Grafted genetic algorithm. Grafting in botanic is 
when the tissues of one plant are affixed to the 
tissues of another. To speed maturity of hybrids in 
fruit tree breeding programs, hybrid seedlings may 
take ten or more years to flower and fruit on their 
own roots. Grafting can reduce the time to flowering 
and shorten the breeding program.

Local Searcher is an extension to the 
conventional genetic algorithm as it need not make 
use of genetic components. It facilitates the 
optimization of individual genomes outside the 
evolution process. There are many implementations 
of local searchers [4], [5], some even in hardware 
[6]. In our algorithm, after both the Recombination
and the Mutation have been applied, a Local 
Searcher is used to optimize every single offspring 
genome. Because of the usage of such external 
optimizer the genetic algorithm is no longer “pure” 
and therefore we then speak of a grafted genetic
algorithm. This form of optimization is of a local 
kind. It alters the genome by heuristically changing 
the solution. When approximating a TSP instance, a 
2-opt local optimization technique is applied to 
make modifications to a genome so as to create 
better genomes at a higher rate. This are very 
needed because the evolution process can be quite 
slow with respect to the desired results. Furthermore
it has always been the case in optimization that 
incorporating problem specific knowledge (not only 
through local optimizations, but also in defining the 
evolutionary operators) is required to gain better 
results.

2 Grafted GA for TSP
A genome represents a potential solution to a 
problem. How the solution information is coded 
within a genome, is determined by the Genotype.
TSP Numbered List is a representation of a tour in
the TSP by means of a list in which the locations are 
identified by numbers. 

The fitness function (FF) has a specific task in a 
genetic algorithm and plays a specific role in terms 
of the optimization problem description. The fitness 
function rates the genomes and therefore the 
solutions according to their fitness. Solution for our 
TSP problem is a Hamiltonian cycle and the fitness 
value is the sum of the weights of the edges 
contained in the cycle. The fitness values are then 
rated better when they are smaller. The fitness 
function defines a mapping from the solution space 
to the real number and it plays a role of the 
environment in the optimization problem and holds

Genetic algorithms have been successfully applied 
to the TSP, but for restricted versions of the TSP, 
such as one with the Euclidean distance, they are 
very slow in convergence and more efficient 
methods are known [2].

2-opt is a simple local search algorithm for solving 
the Travelling Salesman Problem. The main idea 
behind it is to take a route that crosses over itself 
and reorder it so that it does not. The  basic  step  of  
2-opt  is  to  delete  two  edges  from  a  tour  and  
reconnect the remaining  fragments of  the  tour by 
adding  two new edges. Once we choose the two 
edges to delete, we do not have a choice about 
which edges to add – there is only one way to add 
new edges that results in a valid tour. The 2-opt 
algorithm repeatedly looks for 2-opt moves that
decrease the cost of the tour. A 2-opt move 
decreases the cost of a tour when the sum of the 
lengths of the two deleted edges is greater than the
sum of the lengths of the two deleted edges. A 2-opt 
move  is  the  same as  inverting a  subsequence of  
cities  in  the  tour.

Here is pseudcode for the 2-opt local search 
algorithm:

current_tour := create_random_initial_tour() 
repeat  

modified_tour := apply_2opt_move(current_tour) 
if length(modified_tour) < length(current_tour) 

then current_tour := modified_tour 
until no further improvement or a specified number 
of iterations 

Although the 2-opt algorithm performs well and can 
be applied to Traveling Salesman Problems  with  
many  cities [3],  it  has  a  serious  drawback since 
it  can  quickly become  stuck  in  local minima.

The Greedy Heuristic gradually constructs a tour 
by repeatedly selecting the shortest edge and adding 
it to the tour as long as it doesn’t create a cycle with 
less than N edges, or increases the degree of any 
node to more than 2. The same edge must not be 
added twice. The running time for this heuristic is O
(n2log2(n)) and the pseudo code is:

1. Sort all edges.

2. Select the shortest edge and add it to our tour if 
it doesn’t violate any of the above constraints.

3. Do we have N edges in our tour? If not, repeat
step 2.



tournament size – 2. The Random Mater is like a 
simple way of mating parents. It mates the parents 
as enumerated in the population at random using the 
mating size to create groups until no more groups 
can be created. The random behaviour prohibits the 
creation of the same groups of parents over and over 
again. Parameters programmed: Grouping size – 2. 
The new offspring only replacer is the 
implementation of the classical replacement strategy 
that simply only allows the offspring to survive. 
Thus the genomes from the next generation replace 
the entire current population. This is the 
replacement strategy that will suffice for most 
genetic algorithms. The equality terminator four all 
equal genomes,  implements the termination 
condition specifying that the genetic algorithm 
should terminate when all genomes in the 
population are identical-all equal genomes. 

The Local Searcher is an extension to the 
conventional genetic algorithm as it need not make 
use of genetic operators. It facilitates the 
optimization of individual genomes outside the 
evolution process. After both the Recombination
and the Mutation have been applied, a Local 
Searcher is used to optimize every single offspring 
genome. The Local Searcher has no further 
knowledge on the execution of the genetic algorithm 
in the larger setting. The system will provide it with 
the genome it needs to locally optimize when 
needed. Fig. 1 presents the pseudo code for the 
algorithm.

t=0
initialize(P(t))
evaluate(P(t))
while(not terminate(P(t))) do

sel=select(P(t))
mat=mate(sel)
rec=for each mated collection m∈mat do localsearch(l)
loc=for each genome g in each recombined collection

r∈re do local search(l)
rep=replace(loc, P(t))
P(t+1)=select(rep)
evaluate(P(t+1))
t=t+1

Figure 1 Algorithm Code

The 2-opt Hybrid searcher is a local optimizer 
for the TSP that has been grafted into the standard 
genetic algorithm. This local optimizer performs the 
well known 2-opt Heuristic that exchanges edges to 
reduce the length of a tour. An exchange step
consists of removing two edges from the current 
tour and reconnecting the resulting two paths in the 
best possible way. (Fig. 2)

information on the coordinates of the locations or 
the distances between them. For each location it`s 
coordinates are stored within this FF, these locations 
are in the two dimensional space of real numbers.

Edge map recombination makes use of a so 
called edge map. This edge map is a table in which 
each location is placed. For each location there is a 
list in which the neighbouring location are listed if 
this location within the two parents. Recombination 
is then established as follows:

1. Choose the first location of one of both parents 
to be the current location.

2. Remove the current location from the edge map 
lists. 

3. If the current location still has remaining edges, 
go to step 4, otherwise go to step 5. 

4. Choose the new current location from the edge 
map lists of the current location as the one with 
the shortest edge map list. 

5. If there are remaining locations, chooser the one 
with the shortest edge map list to be the current 
location and return to step 2.

Example:

Parents: 1-2-3-4-5-6; 2-4-3-1-5-6

Edge map: 1) 2 6 3 5; 2) 1 3 4 6; 3) 2 4 1; 4) 3 5 2; 
5) 4 6 1; 6) 1 5 2 6

1. Random choice: 2.
2. Next candidates: 1 3 4 6, choose from 3 4 6

(same #edges), choose 3.
3. Next candidates: 1 4 (edge list 4 < edge list 

1), choose 4.
4. Next candidate: 5, choose 5.
5. Next candidate:  1 6 (tie breaking) choose 1
6. Next candidate; 6, choose 6.

Offspring:
2-3-4-5-1-6

Tournament Selector places groups of genomes 
from the population together, creating the groups 
from top to bottom with respect to the enumerative 
ordering of the genomes in the population and 
selects the best of the genomes within this group
(the winner of the tournament). This is repeated 
until the required amount of genomes is selected. 
Parameters programmed:  Selection size – 400, 



processor. In this research absolute times were not 
important, we were only intersted in relative 
performance of tested algorithms.

4 Results
All the results are summarized in Table 1. As 
mentioned before, 14 well known cases from 
TSPLIB were used for testing. The names of these 
cases are in the first column and the name always 
contains the size of the problem, i.e. the number of 
cities (which are from 14 to 99).

The last two columns are exact solutions (global 
minima) obtained by Concorde, together with 
execution times. Well known problem with 
moderate sized examples and tools to get optimal 
solutions were selected since the goal of this 
research is not to improve solutions for difficult 
problems but to compare and quantitatively examine  
the effects of grafting local searches (in this case 2-
opt based) to standard genetic algorithm. Such 
knowledge can be used to fine tune and calibrate 
hybrid system that can then be used on large cases. 
These last two columns are used as a reference for 
all other tests.

The second column in Table 1 represents lower 
bond for the quality of solution. It is a simple 
Greedy Heuristic described in Section 1. It is fast,
but very unsophisticated and any reasonable 
algorithm should do better than that. The Greedy 
Heuristic gives results that are about 12% (except 
for some very small cases) worse than the optimal 
solution. The column titled quality shows by how 
many percent is the solution for this algorithm
worse than the optimal solution. 0% in this column 
means that the algorithm found the best solution.

The third column in the Table 1 corresponds to 
the pure 2-opt algorithm. As expected, it also gives 
quick but far from optimal solutions. It quickly finds 
a local minimum, but is unable to broaden the 
search to find another local minimum. However, 2-
opt algorithm is superior to Greedy algorithm, the 
quality of the solution, with the same running time, 
is on average about 6% worse than optimal.

The fourth column in the Table 1 corresponds to 
pure Genetic Algorithm. The running time, as 
expected, is significantly increased. While our GGA 
algorithm reached optimal solution (the same time 
was allowed to previous two quick algorithms) 
below one second or few seconds (0.6 to 13 
seconds), the running time for pure genetic 
algorithm was from 3.4 seconds to 100 seconds 
which was a time-limit. In 6 out of 14 cases the 
optimal solution was not found within that time 
limit, but in 8 cases optimal solution was found and 

Figure 2 Exchange step of 2-opt algorithm

The following figure (Fig. 3) gives an example of an 
application of the 2-opt heuristic to a two 
dimensional geometric TSP:

Figure 3 Example of an application of the 2opt to 
the TSP

3 Tests
For testing our strategy and comparing it to other 
solutions we used all the instances of symmetric 
traveling salesman problem which can be found on 
TSPLIB [7] that have less than 100 nodes. We 
deliberately used well known problem (TSP) and 
relatively small instances for which best solutions 
are known since the goal of this research is not to 
find the better algorithm for the symmetric TSP, but 
rather to compare on well controlled environment
impact of grafting genetic algorithm.  Altogether 14 
instances have been tried out, with different 
complexity and range from 14 to 99 cities per 
instance.

We compared our method (grafted genetic 
algorithm – GGA) with four other methods. As the 
lower bound for the quality of solution we used 
above mentioned Greedy Heuristic. For the upper 
bound for the quality of solution we used exact 
solutions, global minima, obtained by Concorde. 
Then we compared our grafted method with pure 2-
opt algorithm and pure genetic algorithm (GA).

For Greedy Heuristic and pure 2-opt Heuristic 
we limited running time to the time needed by our 
GGA to reach optimal solution. All tests were 
conducted on laptop computer with AMD 2GHz 



algorithm. In all 14 considered cases optimal 
solution was found. It was found in relatively few 
generations and very fast. Execution time was 0.6 to 
13 seconds. It shows that grafting introduces new 
quality and gives results much better than any of its 
components.

middle column indicates in which generation that 
happened. For 6 cases where optimal solution was 
not found, the quality of found solution is expressed 
as for previous cases in percents above the optimal 
solution.

The most important is the fifth column (in red 
color). It describes results obtained by our grafted

Table 1: Five techniques for solving Euclidean TSP

include measuring the optimal blend of two 
components for larger test cases.
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