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ABSTRACT OF THE DISSERTATION
Adaptive Global Optimization with Local Search
by

William Eugene Hart
Doctor of Philosophy in Computer Science & Engineering

University of California, San Diego, 1994
Professor Richard K. Belew, Chair

This dissertation examines the performance of genetic algorithm (GA) hybrids that
use local search to solve global optimization problems. GAs are a class of adaptive
global sampling methods that take many cues from mechanisms observed in natural
evolution. (GAs maintain a population of solutions that are used to generate new
solutions in the search space. GA hybrids using local search (GA-LS hybrids) are
motivated by the apparent need to employ both a global and local search strategy
to provide an effective global optimization method. Previous experimental results
have found that GA-LS hybrids not only find better solutions than the GA, but also
optimize more efficiently.

To improve the efficiency of GA-LS hybrids, I propose and experimentally
validate methods that selectively apply local search to solutions in the GA’s popula-
tion. First, local search is randomly applied with a fixed frequency. Experiments with
this method illustrate a trade-off between the refinement performed by local search
and the reliability of the competitive search performed by the GA. Next, I describe two
classes of adaptive methods. Distribution-based adaptive methods use redundancy in
the population to avoid performing unnecessary local searches. Fitness-based adap-
tive methods use the fitness information in the population to bias the local search
towards individuals that have better fitness. An experimental analysis indicates that

these adaptive methods can significantly improve the efficiency of GA-LS hybrids.

XV



This dissertation explores implications of these results for parallel GAs. In
particular, a MIMD design for geographically structured genetic algorithms (GSGAs)
is described. GSGAs were initially developed for SIMD architectures, where it is
difficult to selectively apply local search. An analytic and experimental analysis of
MIMD GSGAs demonstrates that they scale well for large problems.

GA-LS hybrids are used to solve global optimization problems in several
application domains. First, GA-LS hybrids are used to find the weights of a neural
network to solve the six-bit symmetry problem. Next, they are used to solve a simple
19 atom molecular conformation problem. Finally, they are applied to a drug docking
problem. When compared to simulated annealing, GA-LS hybrids not only find better

solutions and optimize more efficiently.
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Chapter 1

Introduction

I.A Global Optimization

Many practical engineering problems can be formulated as optimization
problems using an objective function whose domain, D, represents the space of feasi-
ble solutions (points) and whose range represents the relative utility of each solution.
Solving the optimization problem requires the computation of the global minima
or maxima of the objective function. Without loss of generality, assume that the
objective function is minimized and that there is a unique global minimum. This
dissertation examines objective functions of the form f: D — R, D C R. The aim

of global optimization is to find z* such that

" = arg gé%lf(l‘)

In practice, we need to account for the fact that numerical procedures can only
produce approximate answers. Hence we consider the problem solved if for some

€ > 0 we find a solution in the level set Ly, where d = f(2*) + € and
Ly={x e D] f(x) < d}.

We say that a solution x € Ly is e-accurate.
Powerful local search techniques have been developed to solve optimization

problems. A local search algorithm is one that iteratively improves its estimate of



the minimum by searching for better solutions in a local neighborhood of the current
solution. The neighborhood of a local search algorithm is the set of solutions that
can be reached from the current solution in a single iteration of the local search
algorithm. Local search techniques have been developed for which stopping conditions
can terminate the search at a local minimum of an objective function. If nbhd(z) is a
local neighborhood of x, then « is a local minimum if f(x) = min{f(y) | y € nbhd(z)}.

In general, local minima are not guaranteed to be global minima. Conse-
quently, global optimization methods have been developed to perform a sophisticated
search across multiple local minima. Global optimization is an inherently difficult
problem since no general criterion exists for determining whether the global optimum

has been reached.

I.B Adaptive Global Optimization

Torn and Zilinskas [91] observe that two competing goals govern the design
of global optimization methods. Global reliability is needed to ensure that every part
of the domain is searched enough to provide a reliable estimate of the global optimum.
Local refinement is important since the refinement of the current solution will often
produce a better solution. Most global optimization algorithms achieve these two
goals using a combination of a global strategy and local strategy.

This dissertation focuses on global optimization methods that combine adap-
tive global sampling methods with local search. Adaptive global sampling methods
vary the sampling distribution depending upon the objective function’s values on
previously sampled solutions. This adaptation usually biases the sampling towards
regions of the search space where near-optimal solutions have been discovered. Ge-
netic algorithms (GAs) are an interesting class of adaptive global sampling methods
that take many cues from mechanisms observed in natural evolution. GAs maintain
a population of solutions that are used to generate new solutions in the search space.

They adapt their global sampling by performing a competition between solutions that



selects better solutions with greater frequency. The competitive selection at each iter-
ation (generation) of a GA biases the sampling performed in subsequent generations,
thereby adapting the global sampling.

Térn and Zilinskas’ observation suggests that when a GA is used as a global
function optimizer, its standard operators be augmented with the ability to perform
local search. GA hybrids that use local search (GA-LS hybrids) can use local search
in one of two ways. GAs and local search can be applied in separate phases, using
local search to refine solutions generated by a complete run of the GA. Alternatively,
local search can be applied to solutions in each iteration of the GA. This type of
GA-LS hybrid is particularly interesting because the global and local search methods
can influence each other’s behavior. An important example of this phenomenon is
the Baldwin effect [6, 40] in which learning in natural systems speeds up the rate of
evolutionary change. Similar effects have been observed by a number of authors using
GA-LS hybrids [7, 40, 50]. The research in this dissertation examines the second type
of GA-LS hybrid.

I.C Genetic Algorithms with Local Search

Previous experimental results confirm that GA-LS hybrids not only find bet-
ter solutions than the GA, but also optimize more efficiently [7, 61]. It is noteworthy
that these results examine a limited number of algorithmic combinations of the GA
with local search. I believe that important algorithmic combinations have been over-
looked and that the standard GA-LS hybrids of the GA and local search should be
reconsidered.

In this dissertation, I propose and experimentally validate several non-
standard GA-LS hybrids. The following issues have motivated the algorithmic com-

binations that are examined.

I. How often should local search be applied? Standard GA-LS hybrids apply

local search to every individual in the GA’s population. While this design makes full



use of the potential information provided by the local search, the cost of the local
search method places constraints on the GA-LS hybrids. For example, the cost of
the local search method has constrained many researchers to use small populations
sizes in order to allow the GA to run multiple generations. Further, applying local
search to every individual is does not necessarily improve the efficiency of the GA-LS
hybrid’s search since local searches may be done on solutions which are clearly not
near the global optimum. I propose methods for which the frequency of local search is
automatically adapted, and describe how the optimal local search frequency is related

to the type of problem being optimized.

II. On which solutions should local search be used? If local search is not
applied to every individual in a population, then we need to decide how individuals
are selected for local search. The simplest method of selecting individuals is uniformly
at random. I describe more sophisticated methods that use information from the
population to bias the selection of individuals for local search. First, I describe
methods that use the redundancy of solutions in the population to modify the rate
at which local search is applied to each individual. These methods reduce the chance
that an individual will be used for local search if that solution is similar to other
individuals in the population. I also describe methods that use the values of solutions

in the population to select individuals for local search that are more optimal.

III. How long should the local search be run? The basin of attraction of a
local minimum is the set of solutions from which local search will converge to that
local minimum. When using local search in the basin of attraction of the global
optimum, one clearly wants to perform a complete minimization to the global opti-
mum. However, when performing local search in other basins of attraction, complete
minimization may not be necessary. If the GA-LS does not require refined solutions
to discriminate between two regions of the search space, then complete minimization
may not be necessary. I examine this issue by comparing the efficiency of GA-LS

hybrids using several local search lengths.



IV. How efficient does the local search need to be? It is often possible to have
several local search methods available for a particular search domain. For example,
when optimizing smooth functions on R", numerous local search methods have been
proposed using derivative information to perform the local search. One is often faced
with a choice between two or more local search methods with different efficiencies,
such that the more efficient local search algorithms are more expensive to run. When
selecting a local search method for a GA-LS hybrid, the cost of the local search and
its efficiency are both factors that may affect the overall efficiency of the hybrid. To
evaluate the effect of this trade-off, I examine GA-LS hybrids that apply local search

algorithms which use different types of derivative information.

Taken together, issues [ and II pertain to the manner in which local search
is selectively applied to the GA’s population. These issues are the central focus of
the experimental analysis of GA-LS hybrids, and factors relating to the remaining
issues are considered as part of this analysis. Our approach is to improve these GA-
LS hybrids by introducing mechanisms to selectively apply local search within each
generation. These mechanisms provide a general means for reducing the number
of local searches that can be used with a wide variety of optimization problems.
My thesis is that selectively applying local search can improve the efficiency of each

iteration of the GA while preserving the benefits of the hybridization.

I.D Parallel Genetic Algorithms with Local Search

Research on GA-LS hybrids has been performed on both sequential and
parallel architectures (see McInerney [56] for a review of parallel GAs). Parallel GAs
have been motivated by the need to process large populations when solving high
dimensional problems. They are also important when solving problems for which the
objective function is expensive to evaluate.

Most of the research on parallel GA-LS hybrids has been performed with

coarse-grained MIMD architectures. These computers offer parallelism among a lim-



ited number of processors that run asynchronously. Mclnerney [56] has also analyzed
GA-LS hybrids on a fine-grained SIMD architecture, the CM-200. This computer
offers parallelism among a very large number of processors that execute each instruc-
tion synchronously. Asynchronism is particularly important because GA-LS hybrids
are naturally asynchronous. The time needed to perform a local search can vary
depending on the starting point, and the local search algorithm itself may not be
amenable to a SIMD parallelization. To account for these constraints, McInerney’s
SIMD GA-LS hybrid uses a truncated local search in which all individuals in the
population take a few steps in the gradient direction.

I propose and analyze a MIMD design for geographically structured genetic
algorithms (GSGAs). The SIMD GAs examined by Mclnerney and others are called
GSGAs because they spatially structure the adaptive search performed by the GA.
Gordon and Whitley [35] have recently argued that the algorithmic nature of GSGAs
may be of interest independent of their implementation on a particular architecture
and observe that their performance is competitive with other parallel GAs.! An
analytic and experimental analysis of MIMD GSGAs demonstrates that they scale

well for large problems.

I.E Dissertation Overview

The issues and contributions outlined in the previous sections are elaborated
in the following dissertation chapters. Chapter II presents background material in
local search, global optimization and genetic algorithms. It also discusses previous
work that is related to the research presented in this dissertation.

Chapter III presents a simple extension of the multistart algorithm, which
performs local search using a nonadaptive global sampling method. The new algo-
rithm uses local search with a fixed frequency, which can be viewed as a simple form

of selecting points to perform local search. This analysis indicates that for any given

!For technical reasons, GSGAs are called Cellular GAs by Gordon and Whitley.



function, it is always more efficient to perform local search with frequency of either
zero or one. Thus, this simple form of selecting local search does not improve the
multistart algorithm.

Chapter IV reviews my previous research that analyzes the complexity of
the optimization problem for the GA. I conclude that the space of possible functions
is an important aspect of any analysis of the GA’s performance, which leads us to
consider a set of test functions on R". Finally, I describe a GA that uses a floating
point representation.

Several methods of selectively applying local search in GA-LS hybrids are
proposed in Chapter V. The first simply uses a fixed frequency of local search, but
provides considerable insight into the role that local search plays. Next I propose
methods that use the redundancy in the population to reduce the local search fre-
quency. Finally, I propose methods that use the population’s fitness information to
bias the selection towards more optimal individuals.

Chapter VI describes a MIMD design for GSGAs. An analysis of the al-
gorithm’s efficiency is performed, which is extended to GSGAs that use local search
with a fixed frequency. Experimental results closely match the predictions of the
analysis, and exhibit good scaling properties.

Chapter VII describes the application of these methods to neural networks,
a simple conformation problem and a drug docking problem.

In Chapter VIII, I summarize my findings, discuss implications for related
research with natural evolutionary systems, and point to future research directions.

Appendix A describes a generalization of the biological notion of F statistics.
Appendix B provides formulas for the analytic gradients of the simple conformation

problem discussed in Chapter VII.



Chapter 11

Background and Related Work

This dissertation has been influenced by a number of different fields. The
goal of this chapter is to review literature from these different fields and discuss related
work.

I begin by providing an overview of local optimization and describe several
local search algorithms that will be used throughout the dissertation. Next I discuss
the global optimization problem and review standard methods of global optimization.
This review highlights the use of local search in these methods. It also distinguishes
adaptive and non-adaptive methods of global search. The GA is identified within
this context, and is described in more detail. Geographically structured GAs are
described and contrasted with standard, panmictic GAs. Next I describe how GAs
can be hybridized with local search algorithms. Finally, I discuss previous work that

is related to the research presented in this dissertation.

II.A Local Search

Methods of local search have gained attention in both theoretical computer
science and numerical optimization. An important distinction among local search
methods concerns whether they minimize in the presence of constraints that restrict

the domain of the search [26]. This dissertation examines methods for unconstrained



optimization.

Theoretical computer science is primarily interested in local search methods
over discrete spaces. Johnson, Papadimitriou and Yannakakis [48] observe that “One
of the few general approaches to difficult combinatorial optimization problems that
has met with empirical success is local (or neighborhood) search.” For example, local
search methods have proven very successful for the celebrated Traveling Salesman
problem [47].

A number of authors have performed general analyses of local search meth-
ods over discrete spaces. Tovey [92, 93] models the expected performance of local
search algorithms that optimize real valued functions defined on {0,1}". Johnson,
Papadimitriou and Yannakakis [48] introduce the complexity class PLS (Polynomial
Local Search). Members of PLS are problems for which a local minimum can be
found using a polynomial-time local algorithm that finds a solution with better cost,
or identifies the current solution as a local optimum. Papadimitriou, Schaffer and
Yannankakis [71] use this class of problems to show how local search is the main
underlying method used to solve seeming unrelated problems in computer science.

The field of applied mathematicsis primarily interested in local search meth-
ods used for minimizing continuous functions on compact spaces. An important
distinction among these methods concerns the use of derivative information like gra-
dients, f'(x), and Hessians, f”(x); algorithms can be distinguished by the highest
order derivatives that they use. Algorithms using derivative information of order
greater than zero are somewhat more powerful than those which only use function
evaluations (order zero derivatives). However, derivative information requires addi-
tional calculations, and these algorithms do not always generated good solutions fast
enough to compensate for the additional expense.

Three methods of local search will be used throughout this dissertation. The
first is the non-derivative method proposed by Solis and Wets [84]. Next, conjugate
gradient methods [26, 74] are used to minimize continuous functions using gradient

information. Finally, stochastic approximation is used in pattern recognition methods
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to find the optimal weights for parametric models of data [19].

II.A.1 Random Local Search

Solis and Wets [84] propose several random local search methods for per-
forming local search on smooth functions without derivative information. Their “Al-
gorithm 1”7 uses normally distributed steps to generate new points in the search space.
A new point is generated by adding zero mean normal deviates to every dimension of
the current point. If the value of the new point is worse than the current point, then
this algorithm examines the point generated by taking a step in the opposite direction
from the new point. If neither point is better than the current point, another new
point is generated.

This algorithm depends upon parameters that automatically reduce and
increase the variance of the normal deviates in response to the rate at which better
solutions are found. If new solutions are better sufficiently often, the variance is
increased to allow the algorithm to take larger steps. If poorer solutions are frequently
generated, the variance is decreased to focus the search near the current solution.

Unfortunately, this algorithm does not have well defined stopping conditions.
Solis and Wets examine several attempts to define stopping criteria for random search
techniques, and conclude that “... the search for a good stopping criterion seems
doomed to fail.” In practice, this method is halted after a fixed number of iterations,

or when the step size becomes smaller than a given threshold.

II.A.2 Conjugate Gradient

Several classes of local search algorithms have been defined for algorithms
that use gradient information. Among them, conjugate gradient methods provide an
efficient use of the gradient information while only requiring O(n) storage [74].

Conjugate gradient methods are motivated by an analysis of the steepest

descent method. The steepest descent method iteratively performs line searches in
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Figure I1.1: Performance of the steepest descent method on a narrow valley.

the local downhill gradient direction —<7 f(x). A line search performs a minimization
through a one dimensional slice of a function, specified by an initial search direction.
Thus, the steepest descent method iteratively minimizes the objective function in the
gradient direction.

Consider the path of the steepest descent method shown in Figure II.1.
When applied to functions like this that have narrow “valleys”, the steepest descent
method is inefficient. You might expect that the first line minimization would take you
to the bottom of the valley, and the second would finish the minimization. However,
the new gradient at the minimum of the first line search is perpendicular to the
first gradient. Thus the new gradient does not, in general, point toward the local
minimum.

Conjugate gradient methods remedy this situation by using search directions
that are conjugate to the previous search directions (the initial search direction is the
downhill gradient). The notion of conjugacy attempts to preserve the minimization
along the previous search directions by requiring that the change along the current
gradient remain perpendicular to the previous search directions. A quadratic function

can be expressed as

flz)=c+ bla+ %J}TAJ},

where ¢ and b are vectors and A is symmetric. For quadratic functions, using conju-
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gate search directions guarantees that subsequent line searches preserve the previous
minimizations. Hence, O(n) line searches are needed [74].

Because it uses gradient information, conjugate gradient has well-defined
stopping criterion. The conjugate gradient method uses gradient information do
terminate when the algorithm has reached a critical point of the objective function [26,

74,

II.A.3 Stochastic Approximation

In pattern recognition problems, one is often given a set of data
{(x1,91), ..., (s, y,)} for which we would like to know the relationship between the x;
and the y;. One common approach to this problem is to propose a parametric model

f(z,w) and use minimization techniques to determine parameters w that minimize

J(w) = éE(yiaf(xivw))v

where E(-,-) computes the error between the predicted y value and the actual y value,

y;. A common error function is the squared error
E(a,b) = [la — b||*.

Examples of parametric models are linear models [19], logit models [13] and neural
networks [81].

Both random local search and conjugate gradient methods can be used to
minimize J(w), since gradient information is typically available for this function.
An alternative method of minimizing J(w) is stochastic approximation. Unlike these
other methods, stochastic approximation makes changes to the current solution based
on partial calculations of J(w). In particular, it makes updates to the current solution
using randomly selected samples.

To use information from a single sample, suppose that (z;,y;) is randomly

selected from the data set. The following learning rule is described in White [99] and
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Rumelhart, Hinton and Williams [81]:

Wi = Wy + Awt (IIl)

Awy = = Vw E(ys, [, w4)), (IL.2)

where 7; is the so called learning rate, which controls the step size of this method.
Rumelhart, Hinton and Williams call this the back-propagation learning rule and

discuss the following extension

AU)t = = Vw E(yzv f(xﬂ wt)) + aAwt_l’ (113)

where « is the so called momentum rate, which is used to retain a “memory” of
previous steps. White [99] summarizes analyses of stochastic approximation methods
which show conditions under which w; converges to the optimum with probability

one.

II.B Global Optimization

Methods of global optimization differ from methods of local optimization
in that they attempt to find not just any local optimum, but the smallest (largest)
local optimum in the search space D. Global optimization problems are inherently
difficult, and few assumptions can be made about problems of practical interest. The
methods described below assume that the function is almost everywhere continuous
over D). In general, methods that utilize a priori information about a problem will
outperform general purpose methods that utilize less information. However, in many
practical problems information beyond these basic assumptions will be unavailable.

One important characteristic of global optimization methods concerns whether
their estimate of the global optimum is guaranteed to converge to the global optimum.
For a deterministic algorithm, the estimates of the global optimum, x,, converge if
lim, . x, = x*. Natural generalizations of convergence can be defined for stochastic

algorithms [99]. Unfortunately, convergence is typically provided in a limit that is
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[. Methods with guaranteed accuracy
A.  Covering methods
II. Indirect methods

A.  Methods approximating the level sets

B. Methods approximating the function

II1. Direct Methods

A.  Clustering methods
B. Generalized descent methods

C. Random search methods

Figure I1.2: Classification of global optimization methods.

unattainable in practical terms. Time constraints typically preclude the ability to
search enough to guarantee convergence to the optimum, so heuristics are often used
to generate near-optimal solutions rapidly.

I now review standard methods of global optimization. Because my interest
concerns adaptive global search methods that use local search, I pay close attention
to the role of local search techniques in these global optimization algorithms. Fig-
ure 1.2 shows the classification of global optimization methods proposed by Toérn and

Zilinskas [91] (our category labels).

II.B.1 Methods with Guaranteed Accuracy

The covering methods use a global search strategy that excludes regions of
the search space based on estimates of how much the function can vary over small re-
gions. For example, quasi-Monte Carlo methods [65, 66, 67] deterministically generate

a sequence of points that are uniformly spread across the search space. The accuracy
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of the estimated global optimum is computed using measures of the uniformity of
the sequence of points. Covering methods do not usually incorporate local search
strategies, though they could refine their final estimate by performing local search
with the best solution found. While covering methods have provable convergence
properties, they generally require the user to estimate properties like the Lipschitz
constant. Unfortunately, these properties can be difficult to estimate, so the utility

of these algorithms is unclear in many practical applications [76].

II.B.2 Indirect Methods

Indirect methods use local information like function evaluations to build a
model of either the function or its levels sets. This model is then used to guide the
selection of new samples. Since the construction and maintenance of the model of
the function can be quite costly, these approaches are appropriate when the objective
function is very expensive to evaluate. Neither of the indirect approaches mentioned
above use local search strategies. According to Térn and Zilinskas, these methods are
especially useful in single dimensional problems, though they have been successfully

applied to problems with dimensionality less than or equal to 15.

II.B.3 Direct Methods

The algorithms that we examine in this dissertation can most naturally be
classified as direct methods. Direct methods differ from indirect methods in that they
do not perform expensive processing on the local information. Instead, they directly

use the local information itself to guide the global and local search.

Generalized Descent

The methods for generalized descent attempt to retain the basic functional-
ity of the standard local search procedures while performing global search. Trajectory

methods modify the trajectory of the local search routine so it passes through all of
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the local optima. For example, the method proposed by Fiodorova [20] is composed of
three subalgorithms that are used to (1) descend toward a local minimum, (2) ascend
from a minimum up to a saddle point, and (3) pass through a saddle point. Using
these subalgorithms, new local minima are identified from searches originating from
previously identified local minima. Penalty methods modify the objective function
with penalty terms that make the local search procedure avoid the local minima that
it has previously searched. The tunneling method described by Gomez and Levy [32]
uses two phases: local minimization and tunneling. The local minimization phase
finds a local minimum z’. The tunneling phase minimizes a modified objective func-
tion to find a point 2" such that f(z”) < f(2'). The modified objective function is
designed such that a local search procedure can be used to search for 2" starting from
/. Torn and Zilinskas [91] note that the implementation of generalized descent tech-
niques is similar to a multistart procedure using non-local optimization techniques

(see below).

Clustering Methods

Clustering methods are among the most efficient algorithms proposed for
global optimization. These methods are composed of several steps. First, they per-
form Monte Carlo sampling of the search space. The samples are concentrated to
obtain groups around the local minima and then clustered to give clusters identifying
local minima. Finally, a complete local search is applied to a sample from each clus-
ter. A variety of methods can be used to perform each of these steps. Concentrating
the samples is typically performed by refining the samples with a few steps of local
search and retaining a fraction of the best samples. Térn and Zilinskas [91] describe
a number of clustering algorithms that have been used with these methods, including
standard hierarchical methods. Clustering methods are amenable to analysis because
they use uniformly distributed samples. Rinnooy Kan and Timmer [77, 78] describe
a clustering method and describe conditions for which any local minima will be found

within a finite number of iterations with probability one.
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One drawback of cluster methods is that they tend to perform poorly on
functions with many local minima. For these functions, many more samples are
needed to identify the local minima. It is unclear whether the relatively poor perfor-
mance on these types of functions results from inadequate stopping criteria or from
a bias in the clustering methods towards larger clusters. These techniques have been

successfully applied to problems with as many as 40 dimensions [73].

Random Search

In Toérn and 2ilinskas, the category of random search methods is a collection
of techniques that use randomization and which do not fit nicely into any of the other
categories. [ identify two subclasses of random search methods that are relevant to

this dissertation: ITIC.1 blind random search and II1C.2 adaptive random search.

Blind Random Search Blind random search methods use a global search strategy
that does not use information from previous samples to guide the selection of the
current sample. Because these methods ignore previous samples, they may also be
called non-adaptive. The Monte Carlo and multistart algorithms are examples of this
type of algorithm. The Monte Carlo algorithm (MC) randomly samples from the
search space according to a fixed distribution. The multistart algorithm (MS) uses
MC to generate samples on which local search is performed. MS is a blind random
search method, because it uses MC to generate global samples.

Variants of these algorithms that use a fixed, non-uniform distribution over
the search domain are also blind random search techniques. Also included is the prob-
abilistic multistart algorithm (described in Chapter III) and the algorithm described
in Dorea [17] for which new samples are generated by adding a random deviate (from
a fixed distribution) to the previous sample. Blind random search methods are rel-
atively inefficient, but they are often amenable to analysis [8, 18]. These methods
are limited in their use of local search because the global sampling method is not

influenced by the performance of the local search algorithm.
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Adaptive Random Search Adaptive random search methods differ from blind
random search methods by using information from previous samples to guide the
selection of the current sample. Examples of adaptive random search methods con-
sidered in this thesis are simulated annealing and evolutionary algorithms.
Simulated annealing (SA) is a method of optimization inspired by an anal-
ogy between a physical annealing process for obtaining low energy states and the
process of solving for minimal solutions to discrete optimization problems [11, 51].
SA sequentially generates random deviates of the current solution that are accepted
if a probabilistic test is passed. Suppose ' is the current solution and let " be the
new deviate. If f(2")— f(2’) < 0, the new deviate is accepted. Otherwise, the deviate

is accepted with probability
exp(f(x”)_f(x/))/T .

The value T is the “temperature” parameter that is annealed during the course of
the optimization. Initially, the probability of acceptance is high, and eventually it
becomes small. While SA is used for global optimization, it makes no clear transition
between performing global and local search. At high temperatures, it will frequently
make uphill moves, which enable it to perform a global search. As the temperature
decreases, the search becomes increasingly localized. At very low temperatures, the
search is often localized to a single basin of attraction for which there is a low proba-
bility of escaping in the near term. For this reason, simulated re-annealing has been
proposed [44, 45]. This variant treats simulated annealing more like a local search

technique, using multiple starts to perform the global search.

II.C Evolutionary Search

Evolutionary search algorithms, called competitive search by Toérn and
Zilinskas [91], represent an important class of adaptive search algorithms. Evolu-
tionary search is an adaptive random search that maintains a collection of solutions

that are ranked by their performance and uses a competition between these solutions
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Initialize population (with uniformly generated solutions)
Repeat

Evaluate solutions in the population

Perform competitive selection

Apply genetic operators

Perform local search (optional)

Until convergence criteria satisfied

Figure I11.3: Pseudo-algorithm for a genetic algorithm.

to select solutions for further processing. Research on evolutionary search algorithms
incorporates elements of both biological evolution and global optimization. These
algorithms are inspired by biological evolutionary mechanisms and are often used to
perform global optimization.

The exemplars of evolutionary search algorithms are genetic algorithms,
evolutionary strategie and evolutionary programming [5, 22, 31]. The design and
motivation for these algorithms are different, but they incorporate the same basic
adaptive components [4, 41]. These methods use a collection of solutions (population
of individuals) that are updated iteratively using selection mechanisms and genetic
operators. The general process of each iteration (generation) is described in figure 11.3.

The selection mechanism performs a competition to select a subset of the
solutions for further processing. The genetic operators are used to generate deviates
from the selected individuals. Two types of genetic operators are commonly employed:
mutation and recombination. Mutation uses a single individual to generate a deviate
that is located in the local neighborhood of the individual. Recombination uses two
individuals to generate another individual that is typically located in the smallest
hypercube that contains them both. Local search is another genetic operator that is
sometimes employed with GAs to refine solutions in their local neighborhood.

Using these genetic operators, evolutionary search algorithms perform a
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global search. Global convergence is not guaranteed for all evolutionary algorithms [79],
but experiments with these algorithms indicate that they often converge to regions
of the search space that contain near-optimal solutions. Global convergence is guar-
anteed for the type of GAs used in this dissertation.

Local search is particularly interesting in the context of GAs because the
recombination operator may prove a powerful method for adaptively generating so-
lutions in new basins of attraction. Since evolutionary programming uses only the
mutation operator to generate new solutions, we expect that it will have greater dif-
ficulty generating solutions in new basins of attraction. Evolutionary strategie also

uses recombination, so it may be interesting to use local search with this algorithm.

I1.C.1 Genetic Algorithms

The GA was initially described using populations of binary strings in {0, 1},
which are evaluated by the objective function (fitness function) [42, 31, 57]. When
searching spaces other than {0,1}", the objective function decodes the binary string
and performs the function evaluation.

Holland [42] proposed a selection mechanism that stochastically selects in-
dividuals with probability

)
>oi flws)
This selection mechanism is called proportional selection, since the number of copies of
an individual will be in proportion to the its fraction of the population’s total fitness.
This method assumes the GA is minimizing f(x) and that the global minimum is
greater than or equal to zero, but it can be easily modified to perform selection when
maximizing a function, or when the global minimum is negative.

The binary GA proposed by Holland uses mutation and crossover operators.
With binary strings, the mutation operator changes a single bit on a string, and it
is typically used with low frequency. The crossover operator picks two points on

the the binary representation and generates the new sample by taking all of the bits

between these points from one parent and the remaining bits from the other parent.
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For example, if n = 10 and the chosen points are p; = 2 and p, = 6:
Parent(1): 1111111111 Parent (2): 0000000000 Sample: 0011110000

Crossover is typically used with high frequency, so most of the individuals in each
generation are generated using crossover.

The manner in which the parameters of the objective function are encoded
on each string does not affect the mechanisms of the GA, though it can affect the GA’s
search dynamics. In particular, much research has been done examining how crossover
composes and disrupts patterns in binary strings, based on their contribution to the
total fitness of the individual [30, 85, 86, 97]. This research has motivated the use
of modified crossover operators that restrict the distribution of crossover points. For
example, if the binary string is decoded into a vector of integers or floating point
values, then crossover is often applied only between the integer or floating point

values on the binary string [15].

I1.C.2 Panmictic and Geographically Structured Genetic
Algorithms

GAs can be distinguished by the manner in which the selection mechanism
and genetic operators are applied to the population. Panmictic GAs use selection
mechanisms (like proportional selection) that use global information about the entire
population to perform a global selection. In proportional selection the population’s
total fitness is used to perform selection. Panmictic GAs apply the crossover opera-
tor to pairs of individuals randomly taken from individuals selected from the entire
population.

Geographically structured genetic algorithms (GSGAs) perform a structured
selection in which individuals compete against a fixed subset of the population, and
the genetic operators are applied to individuals selected from these subsets. The most
common way of structuring the selection mechanism uses a toroidal two dimensional

grid like the one in Figure 11.4 [2, 12, 56, 87]. Every element of the population is
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Figure 11.4: The two dimensional grid used by GSGAs to define population subsets.

assigned to a location on the grid. The grid locations are not necessarily related
to the individuals’ solutions. They are often arbitrary designations used to perform
selection. Thus, there are distinct notions of locality with respect to the population
grid and the search space (see Figure I1.5). When local search is performed with
GSGAs, it is performed in the search space. When local selection is performed, it is
performed in the population grid.

Two general methods of local selection have been used to perform selection in
GSGAs: (1) fixed size neighborhoods have been used to define the set of neighboring
individuals [14, 35], and (2) random walks have been used to stochastically sample
the locations of neighboring individuals [12, 56]. Figure I1.4 illustrates the fixed
size neighborhoods that could be used to perform selection. Proportional selection
is applied to the solutions in each of these neighborhoods. Since one individual
is assigned to each grid location, the selection procedure is used to select only as
many individuals as are necessary to use the genetic operators. For example, two
individuals will be selected if crossover is used. The new individual generated from a
genetic operator is assigned to the grid location at which selection is performed.

The early motivation for GSGAs came from SIMD designs for GAs (see
Chapter VI). Mclnerney [56] describes a SIMD GSGA and analyzes the effect of

different methods of local selection. He shows how local selection encourages local
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@ (b)

Figure I1.5: An illustration of the two notions of locality in GSGAs: (a) locality in
the search space, and (b) locality in the two dimensional grid used by GSGAs.

regions of the 2D grid to form demes of very similar individuals, and argues that inter-
deme competition enables GSGAs to perform search while maintaining diversity in the
population. He observes that selection using random walks gave very good results in
his experiments. He notes that this method enabled good solutions to diffuse through
the population, while strongly encouraging the formation of demes.

Gordon and Whitley [35] have recently argued that the algorithmic nature
of GSGAs may be of interest, independent from their implementation on a particular
architecture. They experimentally compare GSGAs to panmictic GAs and observe
that the GSGAs provide superior performance. This philosophy is echoed by Davidor,
Yamada and Nakano [14] in their motivation for the ECO framework. The ECO
framework provides a serial design for implementing a geographically structured GA.

Finally, we note that our definition of GSGAs includes GAs which struc-
ture the selection at a fine granularity. A number of GAs have been proposed
whose competitive selection is intermediate between GSGAs and panmictic GAs.
Miihlenbein [63] makes a similar distinction and describes a GA which uses a set
of independent subpopulations and structures the inter-population communication
with a ladder structure. These subpopulations are typically small, so they perform a

localized search of the function. For example, Whitely [102] illustrates how a small
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population can perform a locallized search in the context of neural network opti-
mization problems. Inter-population communication enables populations to combine

disparate solutions and enables them to perform a global search.

II.C.3 GAs with Local Search

GA hybrids that use local search (GA-LS hybrids) are motivated by the
apparent need to employ both a global and local search strategy to provide an effective
global optimization method. The GA performs an adaptive, global sampling of the
search domain, but it does not efficiently refine solutions. GA-LS hybrids use local
search to efficiently refine solutions, and provide a clear separation between the global
and local search being performed by the algorithm.

The use of local search with GAs is also inspired by biological models of
learning and evolution. We have noted that evolutionary algorithms like the GA
take many cues from mechanisms observed in natural evolution. Similarly, models of
learning are often equated with techniques for local optimization [81]. Research on
the interaction between evolution and learning has naturally led computer scientists
to consider interactions between evolutionary algorithms and local optimization [7].

The following framework is used to describe the range of interactions between
the GA and local search algorithms. Let G be the space of genotypes, and let Ph
be the space of phenotypes. Genotypes are mapped to phenotypes via a maturation
function, 6 : G — Ph. This is a restricted notion of maturation, since the phenotype
is generated only with information that is available in the genotype. Let the function
f(z) be the fitness function, f: Ph — R.

Local search algorithms employ information about the fitness landscape, so
local search is performed in Ph . Iterative moves of the local search are defined using

a local search operator L:

pho = 8(g), ph1 = L(pho), phy = L(ph1),..., phn = L(phn_1)

Local search operators may exploit any information about the fitness function (e.g.,
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derivatives of f) to estimate a solution with a better fitness value.

This differentiates them from mutation operators, M, which depend only
on information contained in ¢; in particular, they are independent of information
about either the phenotypic representation or other individuals in the population.
Note that “mutation” is sometimes used to refer to any and all genotypic modifica-
tions. We reserve the term “mutation” for completely random, “blind” modifications.
Specifically, this notion of mutation does not include modifications like crossover that
exploit information (e.g., population gene frequencies) to select the changes made to

the genotype.

()

Figure I1.6: Illustration of genotypic and phenotypic local search.

Figure I1.6 illustrates the interaction between the various elements of the
framework that we have described. This figure shows how mutation and local search
take a genotype ¢ and generate new genotypes ¢’ and ¢”. The mutation operator
simply generates another genotype, while local search uses the maturation map to
generate a phenotype which is modified using fitness information. When local search

is used, the genotype ¢ may or may not be modified. Lamarckian local search replaces
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g with the result §7'(ph,). The name is an allusion to Jean Batiste de Lamarck’s
contention that (some) phenotypic characteristics acquired during a lifetime can be-
come heritable traits. In our model, acquired characteristics correspond to phenotypic
modifications due to the local search operator, and heritability corresponds to the re-
placement of genome g with 67" (ph,,). If 67" () does not exist, then Lamarckian local
search is not possible since the “reverse transcription” of genetic material cannot be
performed. In this case, only non-Lamarckian local search can be performed. Non-
Lamarckian local search exploits information gained via phenotypic search without
using it to directly modify the genome. Non-Lamarckian local search is typically

used to determine the fitness associated with g.

II.D Related Work

(G As have been combined with local search methods for a number of different
applications. The problem of finding the optimal parameters for a neural network [7,
50, 68] comes closest to the models of learning and evolution. GA-LS hybrids have
been applied to combinatorial graph problems like the traveling salesman problem [9,
63, 95] and the graph partitioning problem [96]. These problems lend themselves to
the use of local search operators because there are a number of very good heuristics
for the local improvement of a solution. Other applications include the mapping
problem [64] and molecular conformation problems [49]. Miihlenbein [60, 61, 62],
Ackley [1], and McInerney [56] have developed application-independent versions of the
GA for optimization with local search. In most of these applications, the performance
of the GA is substantially improved when the local search technique is employed.

There are a number of common elements to the use of local search in these
applications. First, most authors apply the local search to each individual in every
generation. A notable exception is work by Miihlenbein et al. [62] who only perform
local search if the GA is either not increasing fast enough or if the GA is converging to

a solution. Second, most authors apply the local search operator until a local minima
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was found. Some authors did stop their local search after a fixed time limit or after
a fixed number of iterations of their local search algorithm.

Finally, most authors used Lamarckian local search techniques. Belew et
al. [7] and Judson et al. [49] make a clear distinction between mutation and local
search in their experiments, and were able to compare the performance of Lamar-
ckian and non-Lamarckian local search. They found that Lamarckian local search
outperforms non-Lamarckian local search. Judson et al. also found that this perfor-
mance difference increased as the dimensionality of their problem increased.

In all of these results, the algorithmic design of the GA was not significantly
modified to accommodate the local search operator. Some authors did develop parallel
algorithms that were more efficient, but they did not introduce any mechanisms that
treated local search differently. The one change that most of the authors acknowledged
was the use of unusually small population sizes. Few of the experiments performed
by the authors used population sizes over 50 and many of them were less than 25.
This choice appears to have been made because of computational constraints. In fact,
several of the authors noted that their performance improved as the population size

was increased.



Chapter 111

Local Search with Nonadaptive
Global Search

This chapter presents a theoretical analysis of a simple global optimization
algorithm that has been modified to selectively apply local search. The algorithm,
called probabilistic multistart, is a variant of multistart local search. Instead of ap-
plying local search to every randomly generated point, probabilistic multistart applies
local search with a fixed probability. This is not a powerful method of selecting sam-
ples, since it does not use any information about previously selected samples. But for
a given function, the optimal probability of local search is not immediately obvious.

My analysis shows that for any function, the optimal probability of local
search is always either zero or one. Note that Monte Carlo corresponds to a probability
of zero, while multistart corresponds to a probability of one. Thus, probabilistics
multistart is never more efficient than both Monte Carlo sampling or multistart local
search. My analysis describes how characteristics of the function, along with the
error threshold used for optimization interact to determine whether Monte Carlo or

multistart is most eflicient.

28
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III.A Definitions

I analyze the computational complexity of the following algorithms:

Monte Carlo sampling (MC) the algorithm that takes n samples from the search

space from a fixed distribution.

multistart (MS) the algorithm that takes n samples from the search space from a

fixed distribution and applies a complete local search to each of these points.

probabilistic multistart (A-MS) the algorithm that takes n samples from the
search space from a fixed distribution and applies a complete local search from

each of these points with probability A.

These algorithms can be described by a process that iteratively generates a random
point and then applies an operator L(x) to the point to generate a final solution
point. For MC, the operator is the identity. For MS, the operator is a local search
algorithm. For A\-MS, the operator is a combination of the two that applies a local
search algorithm with probability A. Let the operator for A-MS be L,(x). Note that
the operator for MC is Lo(x) and the operator for MS is Lq(z).

Let Y = {y1,...,yn} be the set of initial random points used by these
algorithms. To compare these algorithms, I assume that they use the same fixed
distribution. Without loss of generality, let this be the uniform distribution over
some domain D. Let X* C D be the set of global optima and let f* = f(x%),
x* € X*. Let 2, be the estimate of the global optimum after n samples:

&, = arg min f(L(y))

and fn = f(Z,). Suppose f has N local minima with domains of attraction D; such
that D = UY, D;.! Let

@ = arg min f(z)
2

!This assumes that saddle points are arbitrarily assigned to one of the basins of attraction.
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and f* = f(a7). Finally, let g be a measure on the Borel sets of R". Typically
((A) is simply the n-dimensional volume of the set A, more generally x is a Lebesgue

measure.

III.B Complexity Analysis

In computational analysis, the fundamental tradeoff is between computa-
tional expense and the performance measure for the problem at hand. In the follow-
ing analysis, | equate computational expense with the amount of time an algorithm
uses. The following complexity analysis considers algorithms that use randomization
information [94]. The analysis examines the complexity for the worst possible set
of randomization information, except that a ¢ probability of finding a solution with
accuracy greater than e is given.

This complexity analysis concerns the time complexity of the algorithms,
and the space complexity of the algorithms is ignored. For this analysis, | assume
that every function evaluation incurs a fixed time cost k. Section IV.C.3 discusses the

methods used to evaluate the performance of practical global optimization methods.

III.C Monte Carlo vs. Multistart

I begin by comparing the computational complexities of MC and MS. Fig-
ure [II.1 illustrates the principal definitions that are used throughout this analysis.
The z7 are the local optima of this function, and e is the accuracy at which the
optimization is to be performed. A;(e) and Az(€) measure the amount of each lo-
cal minimum which contains solutions that are e-accuracy (represented by the gray
shaded region with the bar underneath). Bj(¢) and By(e) measure the size of each
local minimum (represented by the bars connected by dashes to the curve). The pro-
portions of these values to the size of the entire search space are the quantities used

in this analysis.
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Figure II1.1: Tlustration of definitions of A;(¢) and B;(e).
Formally, let

Aile) = {xeD;| Err(x) <€}
p(Ai(€))
Zi: u(D)

and let

B(o) = {Di|Err(al) < o)
e u(Bo)
= L)

« is the fraction of points in the domain D that are ¢-close, while 3 is the fraction
of points in D that are in basins of attraction that contain points that are ¢ close.

Clearly, 5 > a.

III.C.1 Monte Carlo Complexity

Given n samples, the probability that the solution is e-close is

P(Err(z,) <e)=1—(1 —a)".
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If we have a ¢ probability of error, then

1-6 = 1—(1—a)

6 = (I—a)

log(4)
log(1 — «)

Since each sample requires a single function evaluation, the complexity of MC is

rlog(d)
log(l — o)

II1.C.2 Multistart Complexity

Given n samples, the probability that the solution is e-close is
P(Err(z,) <e¢)=1—-(1-05)"
If we have a ¢ probability of error, then

1—6 = 1—(1-p3)"

= (B
log(6)
log(1 —3)

Each sample requires the application of the local search method. If T, is the expected

n

cost of local searches started in D — B(e), then the expected complexity is

Tls 10g(5)
log(1 — )

Interesting local search methods require the evaluation of points in the search space,

so 1t is reasonable to assume that 7;, > «.

II1.C.3 Comparison

We can evaluate the relative performance of MC and MS by comparing their
complexity for given € and 6. This gives us a feeling for the trade-off between global

search and local search by defining the conditions for which each of these algorithms
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is more efficient. It is better to use MS when its complexity is less than that of MC.

This is true when

rlog(d) - Tislog(6)
log(1 — «) log(1 — /)
log(1 — j3) Tis
log(1 — «) ”

which is equivalent to having
1— 8 < (1—a)l/x
To understand this inequality, note that

0<1-8<1l-a<l.

Tls/H

As Tjs/k increases, (1 — «) approaches zero exponentially fast. Therefore, the

inequality will be true if 1 — « is near one and Tj;/ is not too big.

III.D Probabilistic Multistart

II1.D.1 Complexity
We now consider the complexity of A-MS, for which
P(Err(z,) <e¢)=1-=2",

where z = A(1 — )+ (1 — A)(1 — «). If we have a ¢ probability of error, then

. log(é)
log(2)

The expected cost for a sample of size n is

n

% 2

; (T 4+ (n —i)k) ( ) )\i(l — )\)”_i = A5+ (n —nA)k
= n(AT;s + (1 = A)k)

Therefore, the complexity is

log(9)
log ()

(ATh + (1 = A)r) (I11.1)
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II1.D.2 Comparison

I now demonstrate that A\-MS is never more efficient than the best of MC
and MS. Let g(A) be the complexity in Equation III.1 parameterized by A.

If A-MS is more efficient than both MC and MS, then since g()) is bounded
it assumes its minimal value at A* € (0,1). Since g()) is differentiable on (0,1),
g¢'(A*) = 0. Further, ¢”(A\*) > 0 since g(A*) is minimal. To show that A-MS is not
more efficient than both MC and MS, it suffices to show that YA € (0,1) these two

conditions do not hold.

Theorem 1 If T}y > &, f > a and 6 < 1, then VA* € (0,1) s.t. ¢'(\*) = 0,
g"(A*) < 0.
Proof:

Recall that the cost function is

o) = 220 (1 b,

~ log(2)
which has derivatives
J0) = S (T = los(z) = VL 5 = Ml = )
g//()\) _ 10iiil;ié)ﬂ) .

(—=2(a — BYATss + £ — M) + [(a — B)AThs + & — M) + 22(Ty, — #)]log(2)) -

If ¢'(A) =0, then

(Tis + & — A&)(a — B)
z(Tis — k) ’

Substituting into the expression for ¢”(A), we get

log(z) =

" _ log(6)(a — B)*(MTis + &k — Ak) (a = B)YATis + £ — A&) + 22(T)s — &)
o= log(:) Sk AT =) )
g//()\) 10g(5)(0z — 6)3()‘T15 + Kk = )‘5)2

23 10g3(2)(T15 — k)

Since a < 3, (a — 3)* < 0. 6 < 1 implies that log(é) < 0. Thus the numerator

is positive. The denominator is negative since 1 > z > 0, log(z) < 0 and T}5 > &.

Therefore, ¢”(X) < 0. [
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Corollary 1 If 7j; > & > 0, then AX € (0,1) s.t. g(A) < ¢(0) and g(A) < g(1).

Proof:

If § <1 and B > a, then the previous argument uses Theorem 1 to prove
the result. If 6 = 1 then g(A\) = 0, so AX € (0,1) s.t. g(A) < ¢(0) = ¢(1). If
B = a, then g(\) = log(8) (A\1s + x — Ax) / log(3). This is a linear function of A that
is minimized at A = 0. Thus, AX € (0,1) s.t. g(A) < ¢(0), so the result is proved. =

I noted earlier that it is reasonable to assume that Tjs > & since interesting
local search methods require function evaluations. With this assumption, A-MS 1is

never more efficient than both MC and MS.

III.E  Summary

In summary, I have described conditions for deciding whether MC or MS are
more efficient and have proved that that \-MC is never more efficient than the best
of either of these methods. Note that the comparison between MC and MS implicitly
depends upon the e-accuracy level required. For large e values, it is likely that a large
fraction of the points will be e-accurate and MC will be most efficient. However, when
¢ is small (as is often the case), MS will be most efficient so long as the local search
method is not too expensive.

The negative results for \-MC indicate that selective local search does not
necessarily improve performance. This result is particularly strong, since it applies for
any given function. It is not clear from our analysis whether this result will generalize
to methods of selective local search which use additional information like the value
of the objective function or results from previous local searches. This additional
information will certainly prove useful in biasing the selection of local searches, but

it is unclear whether it will improve the efficiency of optimization.



Chapter IV

Test Problems and Methods

This chapter motivates the global optimization problems used to experimen-
tally analyze the performance of GA-LS hybrids. First, an analysis of the complexity
of the optimization problem for the GA is presented. These results emphasize the
difficulty of the global optimization problem for an arbitrary function. I conclude that
an analysis of GA-hybrids must pay attention to the relationship between the algo-
rithmic parameters of the GA and the function space from which the fitness function
is selected.

Next, I motivate the use of test functions whose domain is in R" and describe
the three test functions used in the experiments. Finally, I motivate the use of GAs
with a floating point representation and describe the genetic operators used with the

floating point GA.

IV.A Worst-Case Analysis

There have been many attempts to analyze the computational behavior of
the GA, with Holland’s schema theorem [42] central to much of this analysis. Using
it, we can justify how and why certain bit patterns (schemata) will be propagated
from one generation to the next. This can be used to analyze the effectiveness of

different genetic operators (see for example Syswerda [89]). Related analysis with

36
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Walsh functions has also proven very rewarding. Walsh functions can be used to
analyze the effectiveness of genetic operators, as well as analyze the difficulty of the
function being optimized [31, 30].

While these analyses provide some understanding of how GAs perform their
search, they have not been able to identify the class of functions that GAs efficiently
optimize. Any discussion of the computational complexity of the GA must be relative
to a specific class of functions. The assumptions that can be made about the class of
functions are often critical to establishing interesting complexity bounds.

To illustrate the importance of selecting an appropriate class of functions, I
summarize the analysis in Hart and Belew [36] that considers the GA’s computational
complexity for a very broad class of functions. I assume that the reader is familiar
with formal language theory and follow the notational conventions of Hopecroft and
Ullman [43]. Recall that P refers to the class of formal languages that can be rec-
ognized by a deterministic Turing machine (TM) in polynomial time. Additionally,
both NP and RP refer to the classes of formal languages that can be recognized by
nondeterministic TMs in polynomial time. The distinction between the two is that
for languages in N P there must exist at least one path of computation (sequence of
machine states) that leads to an acceptance of the language, whereas for languages in
RP at least half of all computation paths must lead to accepting states. It is known
that P C NP, RP C NP and PN RP # ¢, and it is widely believed that the two
inclusions are proper.! An algorithm is efficient if it completes its computation in

polynomial time. In other words, a TM M is efficient if the language it accepts is in

P.

IV.A.1 Complexity Analysis

Consider F, the class of all deterministic pseudo-boolean functions f such

that f : B' — Z, where B = {0,1}. We can formalize the problem that the GA

!The reader is referred to Gary and Johnson [24] for an excellent discussion of the complexity
differences between P and NP, and to Gill [25] for an exposition of probabilistic computation.
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attempts to solve as a combinatorial optimization problem DGA-MAX (following the
format of Papadimitriou and Steiglitz [72]):

Definition 1 DGA-MAX The Genetic Algorithm combinatorial maximization prob-
lem that (1) uses a deterministic fitness function f and (2) assigns the fitness of the
maximally fit individual in a population to the fitness of the population itself. An
instance of DGA-MAX consists of the following two parts:

1) an integer [ defining the combinatorial space B’

2) an encoding of a TM M, which defines a function f : B' — Z [

In order to determine the complexity of DGA-MAX, we need to define a
version of this problem as a formal language (using the format of Gary and John-

son [24]).

Definition 2 DGA-MAX INSTANCE: a string encoding integers [, and A, and a TM
M; that computes a function f: B — Z in polynomial time.

QUESTION: Does there exist an z € B’ s.t. f(z) > \? [

The optimization version of DGA-MAX is more powerful than the formal language
version of DGA-MAX. Given a TM that solves the optimization version, we can
clearly solve the formal language version. However, it is unknown whether the oppo-
site is true (see Papadimitriou and Steiglitz [72] for further details). Thus, the opti-
mization version is at least as difficult as the formal language version of DGA-MAX.

Hart and Belew prove the following.

Proposition 1 DGA-MAX is NP-complete. [

If P# NP, as is widely suspected, this result implies that there does not
exist an efficient TM that recognizes DGA-MAX.

Corollary 2 The optimization version of DGA-MAX is NP-hard. [

This result indicates that there probably does not exist an efficient algorithm
to solve the optimization version of DGA-MAX. However, this result only applies to
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deterministic algorithms. Since the GA is nondeterministic, it could be the case that
its nondeterminism allows it to efficiently solve either of the versions of DGA-MAX.
For example, it is known that there are languages that can be solved more efficiently
by probabilistic TMs than by deterministic TMs [25]. The following corollary demon-
strates that even though GAs are stochastic, they still require super-polynomial time

to solve DGA-MAX unless RP = NP.

Corollary 3 If RP # NP, then DGA-MAX is not in RP. [

IV.A.2 Performance Guarantees

These results demonstrated that it is highly unlikely that there exists an
efficient algorithm that solves DGA-MAX, whether it be deterministic or nondeter-
ministic. Given this, we consider what other performance guarantees can or cannot
be made for DGA-MAX. It is often the case that you can guarantee performance
bounds, even for problems that are NP-complete.

Consider the optimization version of DGA-MAX. Let Opt(l) refer to the
value of the optimal value for instance I, and let A(I) refer to the value that algo-
rithm A returns for instance I (we assume that A is an efficient algorithm). We are
considering a maximization problem, so Opt(I) > A(I) for all algorithms A, and we
assume that A(7) > 0 for all algorithms and for all instances.

There are a number of performance guarantees defined in the literature. We
consider the the absolute and asymptotic performance ratios to analyze the difficulty
of DGA-MAX. We take the following definitions from Gary and Johnson [24]. Let
the ratio R4(1) = Opt(1)/A(I). We define

o Absolute Performance Ratio R 4:

Ra=inf{r > 1| Rsa(I) <r,VI € DGA-MAX}

e Asymptotic Performance Ratio R:

RY =inf{r > 1|3IN € Z7°s.t. VI € DGA-MAX, Opt(I) > N, R4(I) <r}
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e Best Achievable Asymptotic Performance Ratio Ry (DGA-MAX):
Rarin(DGA-MAX) = inf{r > 1 | there exists a polynomial time algorithm
A for DGA-MAX with R} =r}

R indicates whether we can determine a bound on R4([) above some value N, while

R4 indicates whether we can determine a bound on R4([) for values above N = 0.
Ruarin(DGA-MAX) is the smallest value of Ry over all possible algorithms A. Tt is

this last performance ratio that we analyze. Hart and Belew prove the following:
Proposition 2 If P # NP, then Ry n(DGA-MAX) = oo. n

This result implies that no deterministic algorithm can provide a perfor-
mance guarantee on R4(1) s.t. Ra([) is less than some fixed r. This is true even if
we consider only instances that have optima above fixed thresholds. This is a weak
performance guarantee, and given this result we can easily demonstrate that other

stronger performance results are not possible.

Corollary 4 If P # NP, then no polynomial time algorithm A can guarantee that
Opt(I)— A(l) <6, VI
for a constant ¢ € R2°. [

Since these proofs are for deterministic algorithms, they are not directly
applicable to the GA. The following related proofs show similar results for nondeter-

ministic algorithms.

Proposition 3 If RP # NP, then Ryn(DGA-MAX) = oc. n

Corollary 5 If RP # NP, then no probabilistic polynomial time algorithm A can
guarantee that

Opt(I)— A(l) <6, VI
for a constant ¢ € R2°.
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IV.B Test Problems

The key to the complexity results in the previous section is the fact that the
class of functions is very broad. Thus, it is very difficult to efficiently optimize an
arbitrary function from this class. The conclusion 1 draw from these results is that
an analysis of the GA must be made relative to a class of functions that represents
important practical problems. As was noted earlier, this element is missing from
current computational analyses of the GA.

Some experimental analyses have examined the performance of GAs on
classes of functions that are motivated by an analysis of the role of the crossover oper-
ator. Forrest and Mitchell [23] and Mitchell, Holland and Forrest [58] have examined
the performance of the GA on a subclass of Walsh polynomials. These analyses have
yet to make definite predictions of the performance of GAs, but have provided much
insight into the way the genetic operators perform search.

The functions used in these analyses of the GA have domains in {0,1}". In
my experimental analysis, I perform optimization on continuous functions defined on
R". T claim that it is easier to analyze experimental results when optimizing these
functions, particularly when optimizing with local search methods. In discrete spaces,
the neighborhood structure used to search the domain space can have a tremendous
influence on the performance of local optimization methods. For example, Wein-
berger [98] provides a formalism for computing something like the Fourier analysis,
but over discrete spaces. Analyses like this indicate how discrete problems vary across
their domains. Unfortunately, the results of this analysis appear very specific to the
topological structure of the discrete space. Thus, results on one topology may be
difficult to generalize to problems that have other topologies.

Optimizing functions defined on R" also enables us to make comparisons
with algorithms developed in the global optimization literature. Most problems in

the testbeds used to evaluate GAs and global optimization algorithms are defined on

R" [1, 21, 31, 91]. Thus, I evaluate GA-LS hybrids on problems for which we can
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directly compare my results to other global optimization and evolutionary methods.

The experiments in Chapter V and VI perform optimization on three global
optimization test functions on R". These problems are essentially unconstrained. An
essentially unconstrained function over a domain D has the following properties: (a)
the global optimum is contained in D, and (b) all local minima of f outside of D are
greater than the local minima in D.

The global optimization methods described in Chapter II only assume that
the function is almost everywhere continuous. However, these test problems are
differentiable everywhere. Our experiments will examine the impact of this additional

information for methods that use local search methods that use gradient information.

IV.B.1 Griewank

The Griewank function
fl@)=>"27/4000 + 1 —]] cos(x; /1)
=1 =1
with dimension n = 10 is one of the most difficult global optimization test func-
tions [91]. Figure IV.1 shows a one-dimensional slice of this function, which has been
smoothed a bit to remove some of the local minima. The Griewank function contains
some 500 local minima in [—600.0, 600.0]'°, which are concentrated around the global

optimum at the origin.

IV.B.2 Modified Griewank

A modified Griewank function
folz) =0 27/4000 + 1 —[] cos(x; /1)
=1 =1

varies the weight of the quadratic term in the Griewank function. This function is
a bumpy quadratic when o is one and is a product of cosines when o is zero. This

particular class of functions is interesting because it varies the distance between the
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Figure IV.1: The Griewank function.

values of the local minima in the function; as o approaches zero, the values of the
local minima become similar.

I consider this problem in 10 dimensions. For all o, the minimum value of
the function is zero. I optimize this function over the domain [—600.0,600.0]'°, and

use 0 = 0.1. Figure IV.2 shows a one-dimensional slice of this function.

IV.B.3 Rastrigin

The Rastrigin function
f(z) = 2% + 25 — cos(1871) — cos(18z3)

was proposed in Rastrigin [75]. Mihlenbein, Schomisch and Born [61] describe a
modified version of this function
flz)=10n+ > (:1;22 — 10 Cos(27r:1;¢)) ,
=1
which generalizes Rastrigin’s function to an arbitrary number of dimensions. Fol-
lowing Miihlenbein, Schomisch and Born, I optimize this function in 20 dimensions,
over the domain [—5.12,5.12]?°. The local minima of this function are approximately

located on the integer coordinates, and the global minimum is at the origin.
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Figure IV.2: The modified Griewank function.
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Figure IV.3: The Rastrigin function.
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IV.C Optimization Methods

IV.C.1 Floating Point GA

[ use a GA with a floating point encoding in the experiments. GAs have tra-
ditionally used binary encodings of real numbers to perform optimization on R" [16].
While binary encodings have been used to successfully solve optimization problems,
special manipulation of this encoding is often necessary to increase the efficiency of
the algorithm [83, 100]. There is evidence that optimization on R" can and should
be performed with real parameters. Goldberg [27] provides formal arguments that
floating point GAs manipulate virtual alphabets, a type of schema that is appropriate
in R". Wright [103] and Janikow and Michalewicz [46] suggests that floating point
(GAs can be more efficient, provide increase precision, and allow for genetic operators
that are more appropriate for a continuous domain.

In the experiments, the panmictic GAs use proportional selection, while the
GSGAs use local proportional selection with minimal NEWS neighborhoods. The
fitness values are linearly scaled using the average of the worst individual in the last
10 generations. Solutions are scaled between zero and one. Solutions with values
below the average are scaled to zero. This type of scaling attempts to make the
proportional selection less sensitive to the range of the objective function.

The floating point GA uses a two-point crossover that swaps the floating
point values between two individuals. This is analogous to the two-point binary
crossover when crossover points are only allowed between the sets of bits that encode

the real numbers. A crossover rate of 0.8 was used in the experiments.

IV.C.2 Floating-Point Mutation

I have considered several types of mutation operators for the floating point
GA. Normal mutation adds a normal deviate to one dimensions of an individual.

A random variable Y has a normal distribution denoted by N(u,o) if its density



Rastrigin | Griewank | Modified

Griewank

Normal 2.25 23.13 3.55
Cauchy 204.48 0.19 0.48
Interval 15.16 2.02 1.02
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Table IV.1: Comparison of floating point mutation operators.

function is
1 (=) /(20)

fY(y) = \/mexp

The Cauchy mutation operator adds a Cauchy deviate to one dimension of an indi-

vidual. A random variable X has a Cauchy distribution denoted by C(«, 3) if its

density function is

s
= e =

The interval mutation operator replaces one dimension of an individual with a value

a>0,0>0,—0c0 <z <0

uniformly selected over the domain of that dimension.

Table IV.1 shows the performance of GAs using these mutation operators
on the three test functions. The results are the best solutions found after 150,000
function evaluations, averaged over 50 trials. The differences between the mutation
operators are significantly different.?

The Cauchy mutation operator seems a good compromise between the local
deviates of the normal mutation operator and the global deviates of the interval
mutation operator. The normal mutation operator has a small chance of generating
deviates far away, while the interval operator has a small chance of generating nearby
solutions. While Cauchy mutation is biased towards small deviates, its distribution

has thick tails, which enables it generate very large deviates.

2The statistical analyses performed in this dissertation are multiple statistical comparisons be-
tween several samples of repeated measurements. In this instance, there are three samples that
have 50 measurements each. Multiple comparisons are performed with the GH procedure, which
compares samples with unequal variances [90]. This method tests multiple null hypotheses which
state that the means of each pair of samples are identical. The confidence of this test applies to all of
the hypothesis tests considered collectively. The statistical comparisons reported in this dissertation
have a confidence of (p < 0.05).
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I believe that normal mutation performs better on the Rastrigin function
because of the difference in the size of the search domain between the Rastrigin
function and the other two functions. The domain of the Rastrigin function is 10.24
wide in every dimension, while the domain of the Griewank and modified Griewank
functions are 1200 wide. The width of the search domain can impact the frequency
with which the mutation operators generate solutions that are outside the initial
search domain (which I call external solutions), thereby impacting the ability of the
GA to focus its search for the global optimum.

On the Griewank and modified Griewank functions, it is unlikely for the
mutation operators to generate external solutions, especially as the search focuses near
the origin. On the Rastrigin function, it is not unlikely for the mutation operators to
generate external solutions. Comparing the normal and Cauchy mutation operators
on this function, it is more likely for Cauchy mutation to generate external solutions
since it has a higher probability of generating large deviates. Consequently, the GA
using normal mutation is more efficient at minimizing the Rastrigin function.

This suggests that the “width” of the mutation operators be tailored to the
size of the search domain. However, such an analysis is beyond the scope of this
dissertation. Since I am primarily interested in GA-LS hybrids, the experiments use
Cauchy deviates to search the domain with global samples. T use C'(0,1) Cauchy
deviates with the floating point GA. Unless otherwise specified, the mutation rate is
determined by operationalizing the analysis in Schaffer et al. [82] that examines the in-
teraction between population size, mutation rate and the length of the genome. When

optimizing in R™ with a population of size P, the mutation rate used is /e/n/P.

IV.C.3 Performance Comparisons

The performance of GA-LS hybrids is compared to Monte Carlo sampling
(MC) and multistart local search (MS). In the experiments, the n samples were uni-

formly selected. The following abbreviations are used for MS and GA-LS hybrids:



48

MS-SW - Multistart Solis-Wets

MS-CG - Multistart conjugate gradient

GA-SW - Genetic algorithm with Solis-Wets
GA-CG - Genetic algorithm with conjugate gradient

Previous results suggest that Lamarckian local search is superior to non-Lamarckian
local search, so the experiments use Lamarckian local search.

Three different approaches are commonly used to compare the performance
of global optimization algorithms. The first is the number of function evaluations
needed to find an e-accurate solution. The second is the time needed to find an e-
accurate solution. To account for variations in processing speed between computers,
the CPU time is normalized by the time needed to evaluate Shekel’s function 1000
times [91]. Shekel’s function is a standard global optimization test function. The
third approach is to compare the performance of the methods after a fixed number of
function evaluations. This is particular useful if complete optimization is prohibitively
expensive.

This last approach is used in the experiments. The performance measure
used to compare optimization algortihms is the value of the best solution found after
150,000 function evaluations. In preliminary experiments, the relative performance
of these methods could usually be distinguished after this many function evaluations.

Extra bookkeeping was performed in the GAs to reduce the number of re-
dundant function evaluations. If an individual generated by crossover is identical to
one of its parents, or if an individual is selected but not modified by mutation, then
the fitness for that individual is not re-evaluated.

When conjugate gradient is used in MS and GA, the gradient evaluation
is equated with a single function evaluation. In general, gradient evaluations can
be more expensive than function evaluations, but for the test functions the gradient
evaluation is well approximated by the cost of the function evaluation. The Rastrigin
function’s gradient and function evaluations both require O(n) multiplications, ad-
ditions and calls to trigonometric functions. The Griewank and modified Griewank

functions’ gradient and function evaluations both require O(n) additions and calls to
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trigonometric functions. However, the gradient evaluations require O(rn*) multiplica-
tions, while the function evaluations require O(n) multiplications. This factor should
not substantially bias my results since the dimensionality of these two functions is

not large.



Chapter V

Selective Local Search

V.A Introduction

In standard GA-LS hybrids, a complete local search is performed on every
individual in the GA’s population. While this type of GA-LS hybrid has proven more
efficient than the GA on a variety of problems, I propose that a more selective use of
local search will improve the efficiency of GA-LS hybrids. This chapter evaluates the
efficiency of several GA-LS hybrids that selectively apply local search.

To motivate this work, consider the three graphs in Figure V.1. These graphs
represent possible distributions of local minima in an objective function. Figure V.la
is a function for which local search will probably not improve the GA’s efficiency. Lo-
cal search would help refine solutions to the local minima, but the GA’s competitive
selection should be able to distinguish between points in the two minima since they
have distinct ranges. Figure V.lc represents the opposite extreme, where the ranges
of the two minima almost overlap completely. I expect that GA-LS hybrids which
apply local search frequently will be most efficient on this function, since the fitness of
solutions randomly selected from either local minima will not provide reliable infor-
mation about which local minima contains the global optimum. Finally, Figure V.1b
represents an intermediate function for which GA-LS hybrids may be most efficient

with a moderate amount of local search.

30
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Figure V.1: Three distributions of local minima.
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Figure V.2: Two thresholds for the Griewank function.

Recall from Chapter III that the e-accuracy will affect the relative perfor-
mance of optimization methods. For example, consider Figure V.2 that shows two
¢ thresholds which could be used for the Griewank function. If the ¢; threshold is
required, then the objective function is a bumpy quadratic function that has few local
minima. However, if the €, threshold is used, then the optimization is working with
a function with many local minima, all of which have similar local values. This is
an important observation because GA-LS hybrids that selectively apply local search
may be relatively more efficient at different accuracy levels. The method that best
locates the global optimum may be less efficient than other methods when a larger

accuracy level is required.
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In this chapter, I propose several methods that selectively apply local search.
I first describe a non-adaptive method of selecting points with a fixed frequency. This
is a simple method, but it provides considerable insight into the role that local search
plays in GA-LS hybrids. Next I consider two classes of adaptive methods of selecting
local search. Distribution-based adaptive methods use redundancy in the population
to avoid performing unnecessary local searches. Fitness-based adaptive methods use
the fitness information in the population to bias the local search towards individuals
that have better fitness.

The experiments with these methods address the first two issues described
in Chapter I: (I) how often should local search be used and (II) on which solutions
should local search be applied? The experiments with fixed frequency local search
address issue I, while the experiments with the adaptive methods address issue II. The
factors that affect the remaining two issues are addressed as part of these experiments.
The interaction between local search length and local search frequency is examined,
which addresses issue III. The experiments also compare selective methods for GA-
LS hybrids using random local search and conjugate gradient local search. Since
conjugate gradient is typically more efficient than random local search, this addresses

issue IV.

V.B Nonadaptive Selection

This section examines the performance of GA-LS hybrids that apply local
search with a fixed frequency. This type of GA-LS hybrid treats local search like any
other genetic operator, and is perhaps the simplest method of selectively applying
local search. Much of the previous research with GA-LS hybrids can be viewed as
using local search with frequency 1.0.

[ expect that reducing the local search frequency will be advantageous when
the GA can effectively eliminate regions of the search space in which the global

optimum is clearly not located. Reducing the local search frequency lowers the chance
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of performing unnecessary local searches in these regions. On the other hand, high
local search frequencies will be needed when the GA has a difficult time focusing on
a single best region and refinement of the samples generated by the genetic operators
is needed.

I begin by examining experiments that vary the local search frequency in
the GA-LS hybrids. An analysis of these experiments confirms my expectations, and
provides insight into the role that local search plays in the GA-LS hybrids. Next, I
examine the impact of adding elitism to the GA, and see how it affects the optimal
local search frequency. Finally, I examine experiments that vary the population size

and local search length.

V.B.1 Fixed Frequency Local Search

To measure the effect of the frequency of local search, I examine the perfor-
mance of GA-LS hybrids that use local search with frequencies 0.0625, 0.25 and 1.0.
Experiments were performed with the three test functions. Solis-Wets and conjugate
gradient were both run for 50 function evaluations. Populations of size 50 were used.
Each experiment was averaged over 20 trials. The optimization algorithms were run
until a solution was found whose value was less than 107!¢ or until 150000 function
evaluations were performed. A calculation of the gradient was counted as a single

function evaluation (see Section IV.C.3).

Results

Figures V.3, V.4 and V.5 summarize the results of these experiments.! These
figures plot the average value of the best solution after a given number of function eval-
uations. Figures V.3a, V.4a and V.5a compare the performance of MC, MS-CG and
the three GA-CG hybrids with different frequencies of local search. Figures V.3b, V.4b
and V.5b compare the performance of MC, MS-SW and the three GA-SW hybrids

with different frequencies of local search.

!The results reported here are an extension of those reported in Hart and Belew [37].
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Figure V.3: Log-performance on the Griewank function using (a) conjugate gradient

and (b) Solis-Wets.
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No single method has the best average performance after 150,000 function
evaluations in all six experiments. The GA-LS hybrids using local search with fre-
quency 1.0 have the best average performance for three of the six experiments (see
Figures V.3a, V.4a and V.5b). The GA has the best performance when compared
with methods using Solis-Wets on the modified Griewank function (see Figure V.4a).
In the remaining two experiments, no single method is clearly better.

The performance of MC is relatively poor on all of these functions, though
it is better than MS-SW on the Griewank and modified Griewank functions. The
performance of MS5-CG is quite good for these problems. It is consistently better
than the GA, and it is initially better than the GA-CG hybrids on the modified

Griewank function.

Discussion

As a group, the relative performance of the GA-LS hybrids was roughly the
same for both test functions. Since the objective function has a value of zero at the
global minimum of the test functions, we can equate the value of a solution found
with the e-accuracy of the solution. An inspection of the results indicates that the
GAs which used local search infrequently were more efficient at solving for solutions
with relatively large e-accuracy. The GAs that used local search with frequency 1.0
were more efficient at solving for solutions with small e-accuracy, and appear to be
best suited for solving for the global optima of these problems. This pattern is most
apparent in the performance of the GA-SW hybrids, for which low frequency GA-
SW hybrids are relatively more efficient for are wider range of e-accuracies (e.g. see
Figure V.4b).

These observations about the relative performance of the GA-LS hybrids
provide insight into the way local search is used by the GA. In particular, they in-
dicate that the performance of a GA-LS hybrid is affected by the degree to which
the population’s fitnesses accurately reflect domain-wide characteristics of the func-

tion. The experimental results indicate that the GA-LS hybrids using local search
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infrequently are more efficient at finding solutions with relatively large e-accuracy.
This can be attributed to the fact that the GA’s initial populations are quite diverse,
so the population’s fitnesses accurately reflect the domain-wide characteristics of the
objective function. Thus, the competitive selection can reliably identify regions that
are likely to contain optimal solutions, and applying local search infrequently avoids
numerous local searches on individuals located in bad regions of the search domain.
The experimental results also indicate that GA-LS hybrids using local search
frequently are more efficient at finding solutions with small e-accuracy. This can be
attributed to the fact that the GA’s populations typically lose diversity after several
generations, and new individuals generated by the genetic operators become focused
on some particular subset of the search space. In this case, the population’s fitnesses
do not reflect the domain-wide characteristics of the objective function. Consequently,
the competitive selection cannot reliably identify regions that are likely to contain
optimal solutions. Refining individuals with local search can improve the efficiency
of the GA-LS hybrid in two ways. First, the local searches may generate better
solutions more efficiently than the GA’s competitive selection. Second, the fitnesses
of the refined solutions may reflect the domain-wide characteristics of the objective
function more accurately, especially when complete local searches are performed.
Note that the population diversity is not the only factor that affects the
degree to which a population’s fitnesses reflect the domain-wide characteristics of the
objective function. As I noted in Section V.A, the overlap in ranges among the local
minima of the function affects the degree to which fitness information can be used to
discriminate between local minima. This factor certainly affects the reliability of the
competitive selection, thereby affecting the optimal local search frequency. Consider
the general class of modified Griewank functions that are parametrized by o. The
Griewank function is defined by ¢ = 1.0, and the modified Griewank function used
in these experiments is defined by ¢ = 0.1. Frequent local searches will be more
efficient sooner when o is small, because as o becomes smaller a larger portion of

the search space contains local minima that have values which are very similar to
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the values of the neighboring local minima. A careful inspection of our experimental
results with the Griewank and modified Griewank functions confirms this prediction.
Extended simulations with the GA-SW hybrids confirmed this prediction when com-
paring the performance of GA-SW hybrids with frequencies 0.0625 and 0.25, but not
when comparing GA-SW hybrids with frequencies 0.0625 and 1.0.

V.B.2 Elitism

The focus of the previous analysis of GA-LS hybrids concerns the relation-
ship between the GA’s competitive selection and the frequency of local search. This
analysis indicates that the optimal local search frequency is related to the ability of
the GA’s competitive selection to reliably identify good solutions. As this becomes
more difficult, frequent local searches improve the efficiency of the GA-LS hybrid.

Elitist mechanisms play a similar role in GAs, since they are used to provide
an a priori bias on the relative value of solutions in the population. Elitist mechanisms
identify the best individual(s) in a population and insure that they exist in the next
generation. Therefore, these mechanisms induce a strong bias based on the rank of
individuals in the population.

It is natural to ask how elitism affects the optimal local search frequency. I
expect that introducing elitism will reduce the optimal local search frequency to the
extent that the bias induced by the elitist mechanisms aids in the GA’s competitive
search. If GAs using elitist mechanisms are more efficient than standard GAs, then
GA-LS hybrids using local search infrequently may be most efficient. In fact, there
may be a substantial reduction in the optimal local search frequency since elitist
mechanisms are relatively cheap when compared with local search.

The experiments from the previous section were repeated using an elitist
mechanism which preserves the single best individual in the GA’s population. Ta-
ble V.1 shows the final results for the three test functions after 150,000 function
evaluations. A statistical analysis of these results indicates that the elitist GA and

GA-LS hybrids are significantly better than non-elitist GA and GA-LS hybrids on
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Optimization Rastrigin Griewank Modified Griewank

Method Normal ‘ Elitist Normal ‘ Elitist Normal ‘ Elitist
GA 166.3 3.6 0.26 0.07 0.56 0.06
GA-SW 0.0625 102.9 18.4 0.22 0.11 1.68 0.93
GA-SW 0.25 86.8 37.9 0.09 0.04 1.57 1.02
GA-SW 1.0 75.3 50.0 0.13 0.08 1.15 1.15
GA-CG 0.0625 103.8 24.2 0.02 8.6-1071 0.06 1.6-1072
GA-CG 0.25 117.8 40.8 || 1.2-107% | 1.3-107% 001 1.6-1072°
GA-CG 1.0 108.1 | 59.0 | 1.2-107* | 1.1-107% | 3.2.107® | 1.4-10720

Table V.1: Average performance of GAs and GA-LS hybrids with and without elitism.

the Rastrigin function. On the Griewank and modified Griewank functions, the only
significant differences were between the elitist and non-elitist GAs.

These results confirm our expectations. For all three functions, elitism im-
proves the performance for the GA and GA-LS hybrids. The Rastrigin and modified
Griewank functions exhibit marked improvement when elitism is introduced, and the
best local search frequency shifts from 1.0 to 0.0625. On these functions, the elitist
(GAs are more efficient than the GA-SW hybrids that we tested, and the elitist GA
is better the GA-CG hybrids on the Rastrigin function. It is possible that a GA-LS
hybrid with frequency less than 0.0625 is more efficient than the elitist GAs, but these
results suggest that elitism may provide a sufficient bias to preclude the need for local
search on these two functions.

This last observation is particularly interesting, though not completely un-
expected. The discussion of Figure V.la in Section V.A indicates that there may be
some functions for which local search does not improve the efficiency of the GA. In
the absence of prior information about the function, these results recommend the use
of elitism in the GA-LS hybrids. Further implications of these results are discussed
at the end of this chapter.
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V.B.3 Population Size and Local Search Length

Population size and local search length are two more factors which can affect
the efficiency of GA-LS hybrids. The population size affects the number of samples
that the competitive selection uses to generate new individuals. This factor affects the
degree to which the population’s fitnesses reflect the domain-wide characteristics of
the objective function; more samples enable the population to better reflect features
of the objective function. Consequently, we expect that GA-LS hybrids using local
search infrequently will be more efficient when using larger populations. The effect
of the local search length on GA-LS hybrids is less clear. Longer local searches refine
each solution more, but it is unclear how the degree of refinement affects the efficiency
of a GA-LS hybrid.

The previous experiments have compare the performance of GA-LS hybrids
using populations of size 50 and local searches of 50 function evaluations. These are
small populations for the GA, and local searches with this many function evaluations
do not often completely minimize solutions. To measure the impact of population size
and local search length, the experiments in Section V.B.1 were extended to include
populations of size 200 and local search frequencies of length 200. The experiments
were not performed for GA-CG hybrids. They performed exceptionally well in the
previous experiments, so it would be difficult to interpret results of these new exper-
iments. Tables V.2, V.3 and V.4 summarize the results of these experiments.

The final performance is better with larger populations for the Rastrigin
and modified Griewank functions. As expected, GA-LS hybrids with infrequent local
search are more efficient when using large populations. However, larger populations
appear to be more sensitive to the appropriate selection of the local search frequency
(e.g. see Table V.3).

The effect of local search length is not particularly clear. For the Griewank
and modified Griewank functions the best results use short local searches, but for the
Rastrigin function long local searches are better.

In the results reported in Tables V.2, V.3 and V.4, the total computation



LS Len | LS Freq Pop Size
50 [ 200
0.0625 102.86 | 62.85
50 0.25 86.82 | 63.88
1.0 75.28 | 76.44
0.0625 67.72 | 49.85
200 0.25 76.31 | 55.49
1.0 58.66 | 58.84
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Table V.2: Effects of local search length and population size on GA-SW hybrids

optimizing the Rastrigin function.

LS Len | LS Freq Pop Size
50 ‘ 200
0.0625 0.226 | 0.128
50 0.25 0.092 | 1.273
1.0 0.128 | 10.097
0.0625 0.165 | 0.728
200 0.25 0.145 | 2.689
1.0 0.370 | 9.439

Table V.3: Effects of local search length and population size on GA-SW hybrids

optimizing the Griewank function.

LS Len | LS Freq Pop Size
50 [ 200
0.0625 1.684 | 0.469
50 0.25 1.568 | 0.783
1.0 1.572 | 2.457
0.0625 2.275 | 0.695
200 0.25 2.052 | 2.017
1.0 3.885 | 5.051

optimizing the Modified Griewank function.

Table V.4: Effects of local search length and population size on GA-SW hybrids



LS Len | LS Freq | Pop Size || Rastrigin | Griewank | Modified

Griewank
200 0.25 200 55.49 2.689 2.017
200 1.0 50 58.66 0.370 3.885
50 1.0 200 76.44 10.097 2.457
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Table V.5: GA-SW hybrids that have a fixed computation of 10,000 function evalu-

ations per iteration.

of each iteration of the GA-LS hybrid may vary with the length of local search and
population size. Table V.5 summarizes the combinations of local search length, pop-
ulation size and local search frequency for which the GA-LS hybrids perform the
same computation in each iteration (10,000 function evaluations in this case). In the
Rastrigin and modified Griewank functions, infrequent local search appears to be the

most influential factor.

V.C Adaptive Selection

V.C.1 Distribution-base Adaptation

Methods of distribution-based adaptation modify the local search frequency
based on the distribution of individuals in the population. These methods aim to
reduce the number of local searches used in each generation when there are redundant
solutions in the population. I describe methods based on two notions of redundancy.
First, I consider redundancy due to duplicate solutions in the population. These
methods avoid performing multiple local searches on the same solution by reducing
an solution’s local search frequency in proportion to the number of duplicate solutions
in the population.

Next, I describe how distance metrics can be used to generalize this notion

of redundancy. The goal of this generalization is to avoid performing multiple local

searches on solutions that are within the same basin of attraction. Since it is difficult
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to identify whether two solutions are in the same basin of attraction, this gener-
alization reduces the local search frequency in proportion to the number of similar

solutions in the population.

Redundancy from Duplicate Solutions

When duplicate solutions exist in a population, it is possible (and perhaps
likely) that multiplelocal searches will be started from the same solution several times.
To avoid performing these redundant local searches, we can modify the local search
probability for each individual in the following manner. Consider the z-th individual
which has solution z;, and let N; be the number of solutions in the population which
have the solution ;. Given the specified local search frequency A, the modified local
search frequency for the i-th individual is A/N;. The values N; can be calculated with
O(N?) pairwise comparisons of the population’s individuals. Using this method,
the expected number of local searches performed on each distinct solution in the
population is one. I call this the complete method for calculating redundancy.

The complete method of calculating redundancy can be expensive for prac-
tical problems which have large populations and high dimensionality. I propose two
approximations to this approach that use information from the crossover operations.
Recall that in sexual genetics, all new individuals are the result of mating, so we focus
on these events. When crossover is performed, we can determine whether the parents
of the new individual are duplicates. This is actually information about whether the
redundancy in the previous population, but we can use it to estimate the redundancy
of the individual in the current population.

Let 6(x,y) be the Kronecker function; é(x, y) is one if x equals y, and is zero
otherwise. If the parents of the ¢-th individual are p; and p,, then we can modify the

local search frequency of the i-th individual as follows
A
L+ n(N = 1)é(p1,p2)
where n € [0,1]. This method approximates the complete method of calculating

redundancy by assuming that n(N — 1) other solutions have the same difference
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as the parents of the current individual. I call this the local approximation to the
complete method of calculating redundancy, since it modifies each individual’s local
search frequency independently.

The global approximation to the complete method calculates the number of
individuals generated by duplicate parents, and makes a global modification to the
local search frequency. If there are N’ duplicate pairs of parents during crossover,

then the modified local search frequency is

N
1—N'/N
The modified local search frequency used with the global approximation results in
lower search frequency for both the redundant and nonredundant individuals.
Since the crossover operator can only tell us if two particular solutions are
identical, it cannot be used to identify the subsets of redundant solutions. Hence
the two approximation methods cannot guarantee that local search will be applied to

only one solution from every subset of redundant solutions.

Redundancy from distance metrics

The notion of redundancy in the previous section relies on statistics of the
number of individuals that are identical. I now describe a generalization of this
method that uses a distance metric over the space of genotypes, and demonstrate
that the previous method is a special case. The motivation for this new method is
that in addition to avoiding multiple local searches on the same solution, we would
also like to avoid performing multiple local searches on solutions that are within the
same basin of attraction of a local minima. Since it is difficult to identify whether
two solutions are in the same basin of attraction, we reduce the local search frequency
based on the degree to which solutions in the population are similar.

This generalization is inspired by the biological notion of inbreeding, which
uses a measure called the F statistic to quantify the self-similarity of diploid indi-

viduals in a population. Appendix A formalizes the similarity measure used in the
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biological definition of the F statistic and generalizes the F statistic for similarity
measures on an arbitrary space.

To use the generalized F statistic, we select a distance metric for the space
of solutions and calculate the following ratio

Hy —d(X,Y)

Frr =
1T HT

where Hp is the expected distance between solutions uniformly distributed in the
space of solutions, and d(X,Y) is the distance between two solutions X and Y.
This ratio is used to adapt the local search frequency in a manner similar to the
methods described in the previous section. To measure the complete redundancy

with F statistics, the 2-th individual calculates

1 X Hy —d(X;, X;)
Fi=— ne
NZ Hy

J=1

For an arbitrary metric, Fj7 is bounded above by one, and is bounded below by
Hr — max;; d(X;, X;), which may be negative. Thus F; may be negative. With this

in mind, the modified local search frequency for the complete method is

A(NE;) F; e [1/N,1]

A otherwise

The local and global approximate methods are similarly defined. If F’ is
the F statistic of the parents of the ¢-th individual, then the modified local search

frequency for the local approximate method is

A +n(N-=1F) F'el0,1]

A otherwise

where 5 € [0,1]. If F” is the sum of the F statistics of the parents used to perform
crossover, then the modified local search frequency for the global approximate method
is

AL —=F"/N) F"e€]0,1]

A otherwise
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Since the GA focuses its sampling in subsets of the search domain, it is pos-
sible for the ratio Fr to be high, even though the population contains few redundant
solutions. To account for this effect, we can update the value of Hy based on the
extents of the solutions in the current population. This modification increases the
amount of local search performed at each iteration, enabling local search to be used
at every stage of the search.

Finally, I make two observations. First, redundancy due to duplicate solu-

tions can be captured in this framework using
AX,Y) = (X £Y) V1)

With this distance metric, Hy = 1 and the value of Firis 1 —d(X,Y) = (X ==Y).
Thus F; measures the average number of individuals that are identical to the i-th
individual.

Second, note that the complete method is closely related to the the method
of fitness sharing proposed by Goldberg and Richardson [29]. Fitness sharing is a
method of inducing niche behavior in GAs that enables the GA to converge to a
population that is distributed over several local optima. This method modifies the
fitness measure of every individual in the population based on the distance between
each individual with the rest of the population. The modified fitness measure used

with fitness sharing is
f(z;)
Yizy s(d(@i; 25))

fs(wj) =
where d(x,y) is a distance metric and
Oshare =%

s (x) — Oshare
0 else

Oghare Z &€

If 0share = Hr, then the normalized Fir is s(d(x,y)). Thus the denominator of the
modified fitness function can be seen as the sum of normalized F statistics between
the individual and the rest of the population. This is very similar to the calculation

performed when using the complete method to calculate redundancy with F statistics!
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V.C.2 Fitness-based Adaptation

Methods of fitness-based adaptation modify the local search frequency of
an individual based on the relationship of its fitness to the fitnesses of the rest of
the population. The goal of these methods is to use fitness information to bias the
selection of solutions. These methods assume that individuals with better fitness are
more likely to be in the basins of attraction of good local optima.

Using fitness information, we would like to determine modified local search
frequencies p; > 0 such that Ap; < 1 and }_;p; = N. This last restriction is not
necessary for fitness information to be used. However, I will follow this restriction,
since it will allow me to make direct comparisons with the experiments using fixed
frequency local search.

The value p; can be calculated using any of a number of selection strategies
that have been proposed for the GA [28]. For example, we can use an elitist method
which always performs local search on the individual with the best fitness. To insure
that >, p; = N, the frequency of the remaining individuals are reduced. If NA < 1,
then the frequency of the remaining individuals is zero. Let k = arg min; f(z;). The

modified local search frequency is

NA NAx <1

1  otherwise

0 NA <1
pi = v # k (V.3)
(NA=1)/(N —1) otherwise

V.C.3 Results

GA-LS hybrids using these mechanisms for adaptively selecting local search
were evaluated by optimizing the three test functions. The experiments were run
with the same setup as the experiments in Section V.B.1, except that populations
of size 200 were used. In preliminary experiments with populations of size 50, these

methods induced little or no change in the performance of the GA-LS hybrids.
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The local and global approximation distribution-based methods were run
using three different configurations: (1) using the inequality distance metric defined
in Equation V.1, (2) using the squared Ly norm defined in Appendix A, and (3)
using the squared Ly norm, with adaptively modified Hr values. The local approxi-
mation method was run with n = 1.0, which makes the assumption that the rest of
the population is as inbred as the two parents. The complete method was run for
the inequality distance metric, but the other two configurations proved prohibitively
expensive so results for these experiments are not available.

The results for the distribution-based methods are summarized in Tables V.6,
V.7 and V.8. I omit results for GA-CG hybrids on the Griewank and modified
Griewank functions. GA-CG hybrids performed exceptionally well on these func-
tions without the adaptive selective methods, so it would be difficult to interpret
these results.

A statistical analysis of the results for GA-SW hybrids on the Rastrigin
function (Table V.6a) shows that there are few significant differences between these
methods, and no significant improvements over the fixed frequency methods. A statis-
tical analysis of the results for GA-CG hybrids on the Rastrigin function (Table V.6b)
found significant differences between the the methods using the Ly norm and the
methods using the inequality metric or fixed frequency local search. GA-CG hybrids
using non-adaptive Hp are significantly better when using low frequencies of local
search, while GA-CG hybrids using adaptive Hr are significantly better for almost
all frequencies of local search.

A statistical analysis of the GA-SW hybrids on the Griewank function (Ta-
ble V.7) found a number of significant differences. Of particular interest is that the
GA-LS hybrids using the inequality methods and fixed frequency local search with
frequencies 0.25 and 1.0 are significantly worse than the other methods. This is in
contrast to the fact that these methods have the best results when used with low
frequency. An analysis of the results for the modified Griewank function (Table V.8)

also found these significant differences, but the methods using the L, norm without



Method LS Freq || Baseline | Inequality | Squared L, | Adaptive Squared
Metric Metric Ly Metric
Fixed 0.0625 62.84
Freq 0.25 63.88
1.0 76.44
0.0625 65.43 NA NA
Complete | 0.25 66.79 NA NA
1.0 72.47 NA NA
Local 0.0625 55.37 87.15 84.84
Approx 0.25 64.05 72.46 74.27
1.0 71.43 68.34 66.04
Global 0.0625 59.27 65.74 75.54
Approx 0.25 66.36 59.69 72.94
1.0 71.71 65.21 67.02
(a)
Method LS Freq || Baseline | Inequality | Squared L, | Adaptive Squared
Metric Metric Ly Metric
Fixed 0.0625 89.28
Freq 0.25 106.79
1.0 106.18
0.0625 94.41 NA NA
Complete | 0.25 108.63 NA NA
1.0 105.50 NA NA
Local 0.0625 91.84 58.98 60.61
Approx 0.25 106.25 65.84 64.33
1.0 105.80 96.28 58.37
Global 0.0625 92.50 63.01 64.29
Approx 0.25 111.31 108.56 67.03
1.0 104.39 101.48 73.15

(b)
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Table V.6: Results for the Rastrigin function using (a) GA-SW hybrids and (b) GA-
CG hybrids.



Method LS Freq || Baseline | Inequality | Squared L, | Adaptive Squared
Metric Metric Ly Metric
Fixed 0.0625 0.128
Freq 0.25 1.273
1.0 10.10
0.0625 0.144 NA NA
Complete | 0.25 1.373 NA NA
1.0 8.593 NA NA
Local 0.0625 0.138 0.482 0.466
Approx 0.25 1.322 0.447 0.274
1.0 8.817 0.377 0.148
Global 0.0625 0.131 0.570 0.207
Approx 0.25 1.262 0.476 0.157
1.0 9.362 0.652 2.217

Table V.7: Results for the Griewank function using GA-SW hybrids.

Method LS Freq || Baseline | Inequality | Squared L, | Adaptive Squared
Metric Metric Ly Metric

Fixed 0.0625 0.469
Freq 0.25 0.783

1.0 2.457

0.0625 0.631 NA NA
Complete | 0.25 0.854 NA NA

1.0 2.482 NA NA
Local 0.0625 0.534 0.378 0.504
Approx 0.25 0.882 0.535 0.594

1.0 2.371 0.659 0.557
Global 0.0625 0.530 0.399 0.562
Approx 0.25 0.836 0.500 0.480

1.0 2.523 0.584 0.932
Table V.8: Results for GA-SW hybrids on the modified Griewank function.
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adaptive Hp gave the best results.

These statistical analyses indicate that GA-LS hybrids using the L, metric
can be significantly more efficient than the GA-LS hybrids using either the inequality
metric or fixed frequency local search. Figures V.6, V.7 and V.8 compare the fixed
frequency local search with the local approximation method using the inequality met-
ric and the Ly metric with non-adaptive and adaptive Hy on the Griewank function.
Figure V.6 shows that the inequality metric has virtually no effect on the performance
of the GA-LS hybrid. Inspection of the simulations confirmed that this method made
very small modifications to the local search frequency. Figure V.7 shows that the L,
norm with non-adaptive Hy does much better than the fixed frequency method ini-
tially, but it gets stuck and subsequently gets beaten by the fixed frequency methods.
Inspection of these simulations revealed that the local search frequency is reduced
to a point where very few local searches are performed, which may contribute to its
poor final performance. Finally, Figure V.8 shows that the Ly norm with adaptive
Hyp also does better initially, and with high frequency remains competitive with the
best fixed frequency method. Adapting Hr maintains a higher level of local search,
while allowing the local approximation method to select individuals for local search.

These observations are true for the results of the modified Griewank function,
but the results GA-LS hybrids on the Rastrigin function are less clear. The results
for GA-LS hybrids using the global approximation are similar, though the the global
approximation methods do not reduce the local search frequency as much as the
local approximation methods. In part, this is due to the use of n = 1.0 with the
local approximation methods, which reduces the local search frequency as much as
possible.

Recall that the local selection in GSGAs encourages the formation of demes
of very similar individuals. Consequently, I expect to find more redundancy in the
populations of GSGAs. To see whether this improves the performance of GA-LS hy-
brids, the previous results using the inequality metric are replicated for serial GSGAs.

The results of these experiments are summarized in Table V.9, along with a compar-



73

100 C T T T T T T T ]
\ GA-SWA) 0.0625 — ]
S GA-SWA) 0.25 —— ]
GA-SWA) 1.0 -----
N ST GA- SWB) 0.0625 -
GA-SWB) 0.25 —— 1
‘ GA-SWB) 1.0 --- |
10 F 4
c b
[}
5
3
9]
7
[
13}
1 4
0.1 1 L L 1 1 1 1
0 20000 40000 60000 80000 100000 120000 140000 160000

Number of Eval uations

Figure V.6: Comparison of (A) fixed frequency local search and (B) the local approx-

imation method using the inequality metric on the Griewank function.
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Figure V.7: Comparison of (A) fixed frequency local search and (C) the local approx-

imation method using the Ly norm with non-adaptive Hy on the Griewank function.
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Figure V.8: Comparison of (A) fixed frequency local search and (D) the local approx-

imation method using the Ly norm with adaptive Hy on the Griewank function.

ison to GA-LS hybrids with fixed frequency local search. For the Rastrigin function,
a statistical analysis of these results shows significant differences between the fixed
frequency and complete methods, and the local and global approximate methods. No
statistical differences are noted for the Griewank and modified Griewank functions.
Finally, I examined the performance of the elitist fitness-based selection of
local search. Table V.10 summarizes the results of these experiments. A statistical
comparison revealed no statistical differences between these these results and the
results for the fixed frequency GA-LS hybrids. A comparison of these results reveals
that the results for the Griewank and Modified Griewank functions are virtually
identical with both methods. The results for the Rastrigin function appear slightly
better with the elitist selection method. This matches the earlier observation that
elitism improves the performance of the GA on the Rastrigin function more than the

other functions.
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Method | LS Freq | Rastrigin | Griewank | Modified
Griewank

Fixed 0.0625 8.65 0.11 0.458
Freq 0.25 23.94 0.72 0.661
1.0 61.96 7.40 2.404

0.0625 8.46 0.134 0.397

Complete | 0.25 22.25 0.676 0.5395
1.0 65.04 7.323 2.538

Local 0.0625 6.65 0.131 0.326
Approx 0.25 16.75 0.342 0.446
1.0 52.62 5.735 1.983

Global 0.0625 5.16 0.140 0.442
Approx 0.25 15.03 0.302 0.509
1.0 57.01 5.878 1.851

Table V.9: Results using GSGAs, comparing fixed frequency local search with meth-

ods using the inequality metric.

LS Freq | Rastrigin | Griewank | Modified

Griewank
0.0625 56.58 0.12 0.537
0.25 65.50 1.41 0.863
1.0 75.94 10.06 2.532

Table V.10: Results for elitist fitness-based selection of local search.
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V.C.4 Discussion

The statistical analyses of these results does not identify a clearly superior
method of selecting local search, but the methods using the distance metric with
adaptive Hyp can be recommended. These methods provided excellent performance
on the test functions. Using this type of similarity information is less sensitive to the
effects of the local search frequency than the methods using the inequality metric and
the elitist method of fitness-based selection. When the distance metric is used without
adaptation, it seems to converge prematurely, so adapting Hr seems preferable.

When statistical differences are noted, the complete method of adapting the
local search frequency is often significantly worse than the local and global approx-
imate methods. This is unexpected since the complete method preserves the most
information about the true state of the population. I believe this happens because
the approximate methods tend to lower the local search frequency in the population.
This observation suggests that GA-LS hybrids using local search frequencies lower
that 0.0625 will be more efficient when using large populations.

One factor which is not explicit in the presentation of these results is that
the methods using the L, distance metric are computationally more expensive than
the methods using the inequality metric. This difference is due to the fact that the L,
metric is more expensive to compute than the inequality metric. This factor makes a
big difference in the methods which measure the complete redundancy, since O(N?)
calls to the distance metric are made every generation. While the results in this
chapter have used function evaluations to determine relative time complexities, this
observation emphasizes the need to perform time comparisons for methods which may
involve substantial overhead.

This factor also makes the GSGAs using the Ly metric relatively expensive.
Since GSGAs have redundant populations, each iteration of the GSGA eventually
requires a relatively small number of function evaluations. When this occurs, a con-
siderable fraction of the cost of each of each iteration will be spent performing com-

petitive selection and measuring the redundancy of solutions in the population. The
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cost of the distance calculations is sufficiently expensive to make the GSGAs using

the Ly metric much more expensive than the GSGAs using the inequality metric.

V.D Summary and Discussion

I have proposed methods of selectively applying local search which apply
local search with a fixed frequency, which use information about the redundancy in
the population to reduce the frequency of local search, and which apply an a priori
bias to the selection of individuals for local search. When compared with the standard
application of local search to every individual in the population, these methods can
offer significant improvements in the efficiency of the search.

The analysis of the results for fixed frequency local search provides a sim-
ple model of the interaction between local search and the GA’s competitive selection
which can be used to design efficient GA-LS hybrids. For example, this model indi-
cates that GAs with large populations will be more efficient when using infrequent
local searches. This prediction is confirmed by the experiments in Section V.B.3.
These experiments are not comprehensive enough to suggest an optimal balance be-
tween population size and local search frequency, but the GA-LS hybrids using large
populations with infrequent local search were almost always more efficient than the
other combinations. This is an important departure from previous research with GA-
LS hybrids, which have typically used GAs with small populations and applied local
search to every member of the population.

The model also indicates that GAs that employ biases like elitism will be
most efficient with infrequent local search. In fact, the results with the Rastrigin
function indicate that elitism may make the competitive selection so powerful that
local search is not needed. Since these experiments use a relatively weak form of bias,
this raises the question of the utility of local search for more sophisticated GAs that
use competitive selection mechanisms which take greater advantage of this type of

bias. It is possible that local search may not improve these GAs when applied with
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the non-adaptive, fixed frequency method. However, we do not expect this to be
true for adaptive methods, particularly the fitness-based adaptive methods. These
methods employ a bias that should complement these more sophisticated GAs and
thereby improve their efficiency.

From these results, it is unclear whether the length of the local searches have
a substantial impact on the GA-LS hybrids. However, these experiments confirm that
GA-LS hybrids were usually more efficient when more efficient local search methods
were employed.

While an analysis of these results does not identify a clearly superior method
of adaptively selecting local search, I have argued that the methods using the distance
metric with adaptive Hr (i.e. expected distance between solutions in the population)
can be recommended. Both the local and global approximation techniques work
well with this method. As I have noted above, fitness-based methods are promising,
especially in the context of GA-LS hybrids that use more sophisticated GAs.

In all of the methods proposed in this chapter, the initial local search fre-
quency is a parameter that is unspecified. Other factors of the GA like population
size and elitist methods may provide a bias for selecting low local search frequency.
However, when using adaptive methods of selecting local search points, the best local
search frequency is unclear. In part, this is due to the fact that the e-accuracy desired
appears to affect the optimal local search frequency. One way to handle this difficulty
is to select methods which are relatively insensitive to the local search frequency. The
results for the adaptive methods indicate that the methods using the L, metric have
this property.

Finally, we note that our analysis of GA-LS hybrids may explain the perfor-
mance that other researchers have observed in their GA-LS hybrids. Davis [59] and
Miihlenbein [61] have observed that local search is not needed in the initial stages of
the optimization. Our analysis suggests that local search is probably useful for their

problems, but is best used with a low frequency.



Chapter VI

Parallel GGeographically
Structured Genetic Algorithms

VI.A Introduction

Parallel genetic algorithms can be roughly classified according to the type of
hardware on which the GA is implemented. Island-model genetic algorithms (IMGAs)
have been developed for architectures like the nCUBE2 and Intel 1860 that exhibit
coarse-grained parallelism. These architectures typically have a small number of fairly
powerful processors that are loosely coupled. These parallel GAs have been also called
coarse-grained GAs. The label “island-model” relates these parallel GAs to models
in population genetics that describe the migration of individuals between isolated
subpopulations.

Geographically structured genetic algorithms (GSGAs) have been developed
for architectures like the CM2 and DAP that exhibit fine-grained parallelism. These
architectures typically have on the order of 2!° or more simple processors, and are
often described as massively parallel. These parallel GAs have also been called mas-
sively parallel GAs and fine grain GAs. Whitley [101] has identified a subset of these
parallel GAs, cellular GAs, which can be equated with finite cellular automaton. The

label “geographically structured” refers to the fact that interactions between individ-
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uals are structured according to their location on a fixed grid, and bears resemblance
to the notion of geographic structure in population genetics.

Another distinction typically seen between the IMGAs and GSGAs concerns
the presence or absence of a global synchronization. Massively parallel architectures
often use SIMD (Single Instruction Multiple Data) parallelism, which provides global
synchronization by executing the same instruction on all of the processors simul-
taneously. Coarse-grained architectures typically execute instructions in a MIMD
(Multiple Instruction Multiple Data) fashion, which does not require (or enforce)
global synchronization between the processors.

The algorithms used by IMGAs and GSGAs are clearly distinct from the
algorithm employed by the classic GA. The classic GA uses a single population of
individuals that are panmictically recombined. IMGAs are typically implemented
by independently running a classic GA on each processor, with individuals migrated
between the subpopulations (see Miihlenbein [63]). GSGAs are implemented by as-
signing one individual per processor. Selection and recombination is limited to a small
number of individuals on neighboring processors, typically forming a two dimensional
grid of individuals (see Spiessens and Manderick [87], Collins and Jefferson [12] and
Mclnerney [56]).

Gordon and Whitley [35] have recently argued that the algorithmic nature
of these parallel algorithms may be of interest, independent from their implemen-
tation on a particular architecture. They experimentally compare the performance
of several classic, island-model and geographically structured GAs that are executed
on a sequential architecture. They observed that both IMGAs and GSGAs provide
performance that is superior to the performance of a classic GA. This philosophy is
echoed by Davidor, Yamada and Nakano [14] in their motivation for the ECO frame-
work. The ECO framework provides a serial design for implementing a geographically
structured GA.

I am interested in the algorithmic nature of the GSGA, but wish to paral-
lelize it on MIMD architectures. This particular parallel design is motivated by two
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observations. First, the utilization of a SIMD architecture can be severely reduced if
(a) expensive genetic operators are applied to a subset of the population or (b) the
cost of the genetic operators is highly variable. In addition, the utilization can be
reduced if the genetic operators cannot be synchronized. GSGA-LS hybrids provide
an example of both of these cases. GSGA-LS hybrids apply a local search method
to individuals in the search space, which searches in a neighborhood of the objective
function. The length of a local search may vary depending on the initial point, and
local search algorithms like conjugate gradient involve many steps that are not easily
synchronized. A MIMD design for a GSGA would not be subject to these penalties,
so 1t would better utilize the parallel architecture.

The second observation concerns the cost of a MIMD design for GSGAs.
Several authors have observed that when GSGAs are used, the population forms
geographic clusters, or demes, containing very similar solutions. Since selection and
recombination is performed locally, this implies that a large number of individuals will
perform recombination with very similar solutions. In fact, individuals in these demes
have a higher probability of performing recombination with an identical solution. If we
are optimizing a deterministic fitness function, we can avoid evaluating an individual
when this occurs. This can lead to a substantial reduction in the number of function
evaluations required by the algorithm. As a result, larger populations can be used
than we might have otherwise be expected.

The outline of this chapter is as follows. Section VI.B describes how to
map a GSGA onto a collection of processors, and discusses the communication that
needs to occur between the processors. Section VI.C analyzes the complexity of
the the parallel GSGAs under the assumption that the variability caused by genetic
operators can be ignored. Section VI.D extends this analysis to consider the effect
of expensive genetic operators like local search. Section VI.LE describes the methods
used to experimentally confirm our analysis. Section VLI.F presents the experimental

results, which are discussed in Section VI.G.
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VI.LB A MIMD GSGA Design

My parallel GSGAs use a toroidal, two-dimensional N, by N, grid that
is partitioned onto p processors to distribute the computation. Two methods of
decomposing the population grid immediately suggest themselves. First, the grid
can be partitioned into strips by dividing either the x- or y-dimensions into p parts.
Alternatively, the grid can be partitioned into blocks. If r evenly divides N, and s
evenly divides N, we can partition the grid onto p = rs processors. Figure VI.1
illustrates these two methods of decomposition. The relative complexities of these

decomposition methods will be considered later.

(a) (b)

Figure VI.1: Two types of partition methods: (a) strip partitions and (b) box parti-

tions.

To distribute the GSGAs computation, we need to examine the type of
communication required between the processors. Communication is required to (1)
check for termination signals and (2) perform selection and recombination. Each
processor may terminate independently by achieving a specified fitness level or by
exceeding a specified number of function evaluations. Communication is required to
terminate all of the processors when any of them satisify the termination conditions.

Performing selection and recombination at a given location on the grid re-

quires access to the fitness and genotypes of neighboring individuals that may be
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located on other processors. Two methods have been used to perform selection and
recombination in GSGAs: (1) fixed size neighborhoods have been used to define the
set of neighboring individuals, and (2) random walks have been used to stochastically
sample the locations of neighboring individuals. My parallel GSGA uses fixed size
neighborhoods, so the size of the border areas that need to be communicated between
processors can be determined. Figure VI.2 illustrates several fixed-size neighborhoods
that could be used with a GSGA. Figure VI.2a and VI.2b are called NEWS neigh-
borhoods, because they only use neighbors to the North, East, West and South.

it

(@ (b) (©) (d)

Figure VI.2: Fixed-size neighborhood structures.

Figure VI.3 illustrates the type of border areas needed for the strip and box
decomposition methods. Fach shaded region represents a border region of individuals
that are located on a neighboring processor. Strip decomposition requires two border
regions that need to be updated. The number of border regions for the box decompo-
sition method can depend on the neighborhood structure. If a NEWS neighborhood
is used with box decomposition, then only the four lightly shaded border areas in
Figure VI.3b need to be updated by neighboring processors. If other neighborhoods
are used, then the four darkly shaded border areas also need to be updated.

GSGAs can be distinguished by the manner in which interprocess commu-
nication is coordinated. Serial GSGAs (Ap) require no communication since all com-
putation is performed on a single processor. Globally synchronized GSGAs (A1) use

global synchronization to guarantee that all border regions for all of the processors
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(a) (b)

Figure V1.3: Border areas used by (a) strip partitions and (b) box partitions.

have been communicated before any of the processors can proceed in the next gener-
ation. A barrier method is used to globally synchronize the termination check.

Locally synchronized GSGAs (Az) allow each processor to proceed to the
next generation if it has received updated border regions and has satisfied its neigh-
bors’ requests for updates to their border regions. Termination signals are also locally
synchronized with a small number of short messages.

Asynchronous GSGAs (As) do not require each processor to satisfy all re-
quests for updated borders before continuing; only pending requests are satisfied. Fur-
ther, each processor does not wait to have all of its requests satisfied by its neighbors,
but simply updates border regions with the requests that have been satisfied. Asyn-
chronous GSGAs will probably have a faster execution time than the synchronous
GSGAs, but processors may frequently be using border regions that are inconsistent
with the true state of the parallel system. My experiments examine the impact of
this design. Termination signals broadcasted to the processors and are asynchronously
checked by each processor.

Finally, independent GSGAs (A4) do not perform communication to update
their border regions. Each processor runs independently, except for asynchronous
termination checks. This type of GSGA provides a benchmark for determining the

importance of communicating the border regions.
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VI.C Complexity Analysis I

Because there are no convergence proofs for the GA, we cannot exactly de-
termine the effect that parallelization will have on the rate at which the GA generates
optimal solutions. We can, however, examine the cost of executing k£ generations. In
this section, I present a deterministic complexity analysis. This analysis assumes that
we can ignore variability that can occur when the genetic operators are applied, as
well as the effects of system load fluctuations. Since the traditional genetic operators
are relatively inexpensive, this complexity analysis provides a good characterization
of the performance of the GSGA. In the next section, this analysis is extended to

consider the variability of the genetic operators.

VI.C.1 Time Complexity

Let T}, be the time to perform selection. Given a neighborhood size s and a
problem representation length p, the time complexity needed to perform selection and
apply the crossover and mutation operators is O(s + p) when using local tournament
selection, and O(slog s+ p) when using local proportional or rank selection [87]. Let
Ty is the time to perform a single function evaluation, which is problem dependent,
and let T, 1s the time needed to perform a single floating point operation. By
ignoring variability in the GSGA, we can summarize the work performed for every
individual as (Tyen + T¢) T s10p-

To simplify this analysis, let N, = N, = M and consider the complexity
analysis for a square grid. Let P = M?*/p, which is the size of a subpopulation on
any processor. Without loss of generality, I assume that p evenly divides into M?2.
Let T4+ be the time needed to initiate a message send, and T4 be the time per
word need to execute the message send.

The deterministic time complexity for the serial algorithm, Ay, is

Ty(k) = O(kM*Tyiop [T + Tyen))-
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The deterministic time complexity for A; is

Ti(k) =Ti(k)p™" + kT, (VL1)

comm

where T = Tiorder + Tsiync. The term Thyrger 1s the cost of sending border infor-

comm

mation, and the term Tsiync is the synchronization cost.

The synchronization cost, Tsiync, varies for the three parallel algorithms.

Algorithm A; computes a global termination condition with a log-time spanning tree

algorithm, so T} = O(Tsar log, p). Algorithm A, computes a locally synchronized

sync

termination condition, by communicating to the N,;;, neighboring processors, so

Tfync = O(Npphr Tstart). Algorithm Az does not compute a synchronized termination
condition, so Tfync =0.

For a given partition of the population grid, Ty,,4c- 1s the same for all three
algorithms. However, Ty, 4., varies for the different decomposition methods. When
using strip decomposition, every processor needs to send two messages to update their
neighbors’ grids. Suppose every individual on the grid needs to send S words, and

suppose there is an overlap of m rows (or columns) between processors. Then
Tborder — Q(Tstart + mSMTsend)

SO

T]j(k) = Tl(k)p_l + k[Q(Tstart + mSMTsend) + TZ

sync] .

When box decomposition is used, the cost of Tp,.4., depends on the type of neigh-
borhood used by the GSGA. When NEWS neighborhoods are used, every processor
needs to send four messages to update their neighbors’ grids. If there is an overlap

of m rows and columns between processors in the x- and y-dimensions, then

SM
Tborder =4 (Tstart + LTsend)

VP

SO

: mSM »
T;(k) = Tl(k)p_l + k [4 (Tstart + WTsend) + Tgyn;| .
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When a more general neighborhood is used, four additional messages are required

SM
Tborder =4 (Tstart + (L + mQS) Tsend)
/P

and

SO

: SM »
T;(k) = Tl(k)p_l —I' k [4 (Tstart —I' (% —I_ mZS) TS@TLd) —I_ Téyn;| :

Note that these time complexities are not exact for the box decomposition when p is
small. For example, if there are four processors then the population grid is partitioned
into four boxes. If NEWS neighborhoods are used, only two messages are needed since

the grid is toroidal and only two processors are neighbors to any given processor.

VI.C.2 Performance Analysis

To measure the performance of the parallel GSGAs, [ analyze their effi-

ciency. The efficiency of A; after k iterations is

For the deterministic parallel GSGAs, this expands to

1 kaordeT kTZ -

sync

(k) = p ]; k) (k)

Now let 81 = Tstart/Tiop and By = Tsena/Ts10p. The efficiencies for the three decom-

positions are

Strip Decomposition

7

. 1 1 T -1
Yy =p' = 2 2mSM _Syne VI.2
k) =p lp * (MQ(Tf +Tgen)) ( Br+2m>MPa + Tﬂop)] (V12)

Box Decomposition- NEWS neighborhoods

i L 1 4mSMpB,  Ti, 17
i = [+ (e ) (0 )| o
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Box Decomposition- General neighborhoods

. N 1 AmSM By T N1
np( ) p |j7 Mz(Tf + Tgen) ﬂl \/]3 m 62 Tflop
(V1.4

All of these efficiencies approach one as M and T increase. I expect these two factors
will often be large in practice, so the efficiency of the parallel GSGAs should be good.

To analyze the relative utility of the decomposition methods, we compare
the efficiencies in equations (VI.2) and (VL.4). Some simple algebra shows that the
box decomposition method will have a better efficiency if

el 2) o]

This inequality indicates that box decomposition becomes more efficient than strip
decomposition as p, M and S increase. On many architectures with coarse-grained
parallelism, 31/, is not small; on the nCUBE2, it is approximately 80. Thus strip
decomposition may be more efficient when p is small, and if S and M are not too
large.

Finally, note that the efficiency of the strip decomposition can be affected
by the dimensions of the population grid. If the efficiency for strip decomposition
is generalized to an N, by N, grid, and partition along the y-dimension, then the
efficiency is

: -1

: 1 2
JE)=p7H =+ 1+ mSN,By) 4 =une
O P s D L b

For a fixed population size, this efficiency is maximized when N, is one. When

N, is one, the population consists of a simple array, and communication is minimal
since neighboring processors only need to communicate the neighborhood of a single
individual. However, results reported by Gordon and Whitely [35] and others indicate
that GSGAs using this type of structured population are less likely to find optimal
solutions than GSGAs that use populations structured on a 2D grid.
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VI.D Complexity Analysis II

The complexity analysis in the previous section assumes that the application
of genetic operators introduces variability that has a minimal effect the complexity of
the GSGA. This assumption appears reasonable for GSGAs that employ the standard
genetic operators: crossover and mutation. The cost of applying these operators is
low relative to the cost of performing the function evaluations and selection. Further,
these operators are applied with frequencies near zero and one, which reduces the
expected variability that they introduce (see below).

When expensive genetic operators are employed, the variability of the genetic
operators must be directly incorporated into the complexity analysis of the GSGA.
The following analysis examines the complexity of GSGAs that employ local search.
Local search is considered because it is an exemplar of expensive genetic operators,
but this analysis applies to any genetic operator.

The deterministic complexity analysis can be extended to include expensive
genetic operators by applying a fixed-cost local search to a fixed fraction of the popu-
lation. An example of a fixed-cost local search is a random local search method, like
the one described by Solis and Wets [84], which is terminated after a fixed number of
function evaluations. Using local search in this manner, the deterministic computa-
tional complexity is a simple extension of our previous analysis. Let A be the fraction
of the population that uses local search, and let T}, be the time complexity of the

local search. Then the complexity for Ag is
(k) = O(KT 1oy [ M?*(Ty + Tyen) + [ M?A| T0]).

The deterministic complexity of Ay, A; and As simply uses this value in equa-
tion (VI.1).

Indeterminism can be introduced to the GSGA by either applying the local
search to a randomly selected subset of the population, or by allowing the cost of
the local search to vary. When local search is randomly performed on a subset of

the population, the complexity analysis depends on the distribution of the cost of the
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partitions for each iteration. The cost of a local search can vary if the local search
algorithm uses stopping criteria that depend on the characteristics of the function at
the current solution. For example, gradient information can be used to terminate local
search algorithms when the solution is a critical point of the function. When using
variable cost local search, the complexity depends on the sum of the distributions of

the cost of the local searches.

VI.D.1 Local Search on Random Subsets

Starting local search on a random subset is simply the fixed frequency local
search described in Chapter V. Let A be the probability that local search is started
from each individual. In this case, the complexity of an iteration can be modeled as
a binomial random variable Y that assumes values T, (T + Tyen) and Tpp(Ts +
Tyen + Tis), where Tj; is the fixed cost of the local search.

Since the cost of each iteration of Ay is a binomial random variable, the com-
putational cost of Ag is a sum of &£ binomially distributed variables with parameters
M? and A. Therefore, the computational cost of Ay can be modeled as a binomially

distributed variable with parameters £M? and A. The expected complexity of Ay is
E(Ty(k)) = O (EM*Tp10p(Ty + Tyen + ATl ) )

Because A is globally synchronized, its complexity is the sum of the com-
plexity of every iteration. The complexity of each iteration is the sum of the cost of
communication plus the cost of the longest process. Let Y; be the cost of the i-th

process. The complexity is

p

BT} (k) = O (kE(Yu) Triop + KT,

where

Yn:n = maXx }/z
i=1,...,n

An analytic expression for E(Y,.,) is not available because Y is a binomial random

variable. However, when either P or P/log p is large, we can approximate Y by a
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normal random variable, Y, with mean g and standard deviation o, where
H = P(Tf + Tgen + )\Tls)

and

g = Tls )\(1 — )\)P

Applying the approximation to Y/ used in Kruskal and Weiss [53], we have

E(TM (k) ~ O (kTﬂopP(Tf Ty + MTh) + KT 10y Tis2M(1 = N) P log p + ijomm) .
(VL5)

To analyze As, we compare the maximum length of each process indepen-

dently. Since the computational cost of each process is the sum of £ binomial dis-
tributed variables with parameters P and A, the sum is itself a binomial distributed

variable, with parameters kP and A\. We can apply the same approximation used for

Aq to get

E(T3 (k) ~ O (kTﬂopP(Tf Ty + MT3) + Ty T [26A(L = )P log p + K17 ) .

comm

This is an upper bound on the time complexity, since the communication complexity

may be less than 77

comm”’

It is possible (and perhaps likely) that processors will not

receive requests to update all of their neighbors’ border regions every generation.
The complexity of A, is more difficult to determine, since the cost of the

longest processor after k iterations is not independent of the cost of the other proces-

sors. It is clear that

E(T, (k) = E(T,(k)) = E(T,) ().

P P
since synchronization penalizes A; more than A,, and since Az is not penalized by

synchronization. It is not difficult to show that

E(T; (k) 2 O(E(Yanan) + (k — 1) E(Ya2))

p

but general upper bounds have not been determined.

The efficiency of Ay and Az is

E( l(k)) _ 1 l‘|‘ 1 B T Tclomm -
np —r P MQ(Tf + Tgen + )\Tls) ! Tflop
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and
E(n(k)) =p~ [1+ ( . ) (B + —Timm)]_l (VL6)
np -7 P MQ(Tf + Tgen + )\Tls) g Tflop ‘
where
2A(1 — M1
B = T15M¢ (1= Nlogp (VLT)
Jp

The term B, represents the penalty introduced by the variability of the local search.
This term is zero when A is zero or one, and is minimized when 7}, is small.! The
term B; is also minimized when p and j increase. Since By is used in equation (VI1.6),
the efficiency of A3 improves as the number of iterations of the algorithm increases.

Figure VL.D.1 illustrates how 5, (k) is affected by A and Ti . ... Considered
as a function of A, the efficiency has one minima that occurs for small A\. If 7% =0,

then the efficiency is minimized when B is maximized, which occurs at

Ty + Tyen
U <05
Q(Tf + Tgen) + Tls

When T, is much larger than (T + Ty ), the term B; is maximized when A is small.
As T! increases, the performance for large A\ decreases, but the minima moves

comm

very little.

VI.D.2 Variable Length Local Search

If the distribution of the cost of the local search is known, the same analysis
can be applied to determine the computational complexity. The complexity analysis
will be based on the distribution of each processor’s iteration, which will be the sum
of the distributions of P local searches. Distributions of sums can be analytically
determined for many distributions, so this analysis should be straightforward.

I expect that the distribution of the cost of local searches will change as the

GSGA samples different regions of the search space. Since the cost of each iteration

!This confirms our assumption in section VI.C concerning the minimal impact of the standard
genetic operators. Since they are inexpensive and are applied with high or low frequencies, they
introduce a small penalty to the overall efficiency.
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Figure VI.4: Comparison of efficiencies for different local search complexities for (a)
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of Ay can be independently computed, the complexity analysis in equation (VI.5) can
easily be generalized to allow the cost to vary as this distribution changes. However,
the complexity of A3 depends on the distribution of the sum of each processor’s costs
on each iteration. Thus it may be more difficult to provide a general analysis of the

complexity of As.

VI.E Methods

To validate the theoretical analysis of the GSGA, I implemented an GSGA
and evaluated its performance on the Intel Paragon at the San Diego Supercomputer
Center. The GSGA was implemented using the MP++4 and LPARX routines de-
scribed in Kohn and Baden [52]. The LPARX routines were used to implement the
inter-process communication in the globally synchronous GSGA, and were modified
to perform inter-process communication in the locally synchronous and asynchronous
GSGAs.

The parallel GSGAs were evaluated using the Rastrigin function. GSGAs

with floating point encoding were used in the experiments. The crossover rate was 0.8
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and the mutation rate was 0.01. Proportional selection was used to select individuals
within each neighborhood. The theoretical analysis indicates that small neighborhood
sizes are most efficient, since this minimizes the total cost of performing selection.
In the experiments, I used the minimal neighborhood, which only includes the two
immediate neighbors along each dimension of the population grid (see Figure VI1.2a).

Measuring the efficiency for the parallel GSGAs requires the calculation of
both T;, the time to complete for p processors, and T¥, the time to complete for one
processor. For the parallel GSGAs, the calculation of the efficiency is complicated
by the fact that the algorithm for the uniprocessor GSGA differs from the algorithm
for the p-processor GSGAin their use of random number generators. On a single
processor, one random number generator is used; on p processors, each processor uses
a separate random number generator.

To calculate the efficiency, I on an indirect means of measuring 7%. Recall

that the time complexity for A; is

Ti(k) =T (k)p~" + kT

comm

This indicates that we can estimate 7} by summing the completion times for the
p processors and subtracting the time spent performing communication. When an-
alyzing the efficiency in the experiments, the completion times do not include the
time required to setup and initialize the GA, but simply include the time required to

execute all of the generations.

VI.F Experimental Results

These experiments examine GSGAs run with 4, 16 and 64 processors. Unless
otherwise stated, the experiments were run using box decomposition on a square
population grid, so the population grid on every processor is square. The GSGAs
were terminated when a solution with value 0.1 was found, or after 1000 iterations.
All efficiency values are averaged over 10 trials. Number of function evaluations are

multiples of 10%.
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GSGA | p || 7, | Num | CPU

FEval | Seconds

Global | 4 | 0.84 20 104.1
Sync | 16 || 0.81 14 80.5
(A1) |64 0.75 13 88.0
Local | 4 || 0.85 19 104.9
Sync | 16 || 0.77 14 88.7

(A2) |64 0.69 13 94.4
4 || 0.94 17 79.6
Async | 16 || 0.94 15 71.5
(As) |64 0.94 13 64.7
4 || 1.00 21 93.9
Indep | 16 || 0.99 17 75.8

(A4) | 64099 15 70.7

Table VI.1: Performance of GSGAs using 24 by 24 grids on each processor.

To match the experimental results to the theoretical analysis, the the effi-
ciency of the GSGAs was calculated. The number of function evaluations reported
in the results are the maximum number of function evaluation across the processors.
The numer of CPU seconds is the is the maximum number of CPU seconds since the

beginning of the first generation across the processors.

VI.F.1 Results without Local Search

Table V1.3 shows the efficiency of the parallel GSGAs when the computation
on each processor is kept constant. For these experiments, each processor uses a 24
by 24 grid. When run with 4, 16 and 64 processors, the GSGAs are optimizing with
grids of dimension 48, 96 and 192 respectively.

To compare the efficiency of GSGAs for smaller grids, these results are du-
plicated with each processor using a 12 by 12 grid. When run with 4, 16 and 64
processors, the GSGAs are optimizing with grids of dimension 24, 48 and 96 respec-

tively. Table V1.2 summaries the results of these simulations.?

ZNote that the number of function evaluations differs between 4; and A, because these algorithms
employ different termination conditions.
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GSGA | p || 7, | Num | CPU

FEval | Seconds

Global | 4 | 0.67 9.1 61.7
Sync | 16 || 0.57 4.9 48.5
(A1) |64 0.56 3.5 32.1

Local | 4 || 0.68 9.1 60.6
Sync | 16 || 0.66 5.0 36.3
(Az) | 64 0.62 3.6 30.5

4 |1 0.85 | 10.0 57.5
Async | 16 || 0.81 5.4 31.3
(As) |64 0.81 3.6 21.0

Table VI.2: Performance of GSGAs using 12 by 12 grids on each processor.

Next, the GSGAs were modified to eliminate redundant function evaluations
for individuals that are not modified. Checks were made to insure that crossover did
not generate a new individual, and that the individual was not mutated. Table VI.3
summarizes the results of these simulations.

Finally, I compare the performance of the block partition to the strip parti-
tion. To compare the strip partition to the results in Table VI.1, every processor uses
a 3 by 192 grid. When run with 4, 16 and 64 processors, these GSGAs are using grids
of dimension 12 by 192, 48 by 192, and 192 by 192. Table VI.4 summarizes the results
of these simulations. Several authors have noted that modifying the dimensions of
the population grid may impact the rate at which the algorithm optimizes. Thus, the
statistics for the number of function evaluations and iterations may not be directly

comparable to the results in Table VI.1.

VI.F.2 Results with Local Search

I examine the impact of local search using 16 processors with a 12 by 12
grid on each processor. Solis-Wets was run for 100 function evaluations, at frequencies

0.0625, 0.25 and 0.5. Table VI.5 summarizes the results of these simulations.
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GSGA | p | 5 |Num| CPU
Eval | Seconds
Global | 4 || 0.84 9.6 92.3
Sync | 16 || 0.82 7.1 68.4
(A1) |64 0.78 6.8 72.0
Local | 4 | 0.84 9.6 92.7
Sync | 16 || 0.81 7.1 72.3
(Az) |64 0.74 6.9 81.1
4 | 0.94 8.2 69.1
Async | 16 || 0.93 7.6 64.4
(As) |64 0.94 7.0 60.3

Table VI.3: Performance of GSGAs using 24 by 24 grids on each processor, with

bookkeeping to avoid unnecessary function evaluations.

GSGA | p | 5 |Num| CPU
Eval | Seconds
Global | 4 || 0.88 16 82.9
Sync | 16 || 0.81 14 78.6
(Ay) |64 0.70 13 89.1
Local | 4 | 0.89 16 80.5
Sync | 16 || 0.83 14 5.7
(A2) |64 0.71 14 90.2
4 1 0.96 18 83.4
Async | 16 || 0.94 15 73.6
(As) | 64 0.89 13 69.2

Table VI.4: Performance of GSGAs using strip partitioning with 3 by 192 grids on

each processor.



GSGA A 7, | Num | CPU
Eval | Seconds
0.0 0.57 4.9 48.5
Global | 0.0625 || 0.62 9.3 53.5
Sync | 0.25 0.78 | 22.0 98.3
(A1) |05 0.86 | 30.0 123.5
0.0 0.66 5.0 36.3
Local | 0.0625 | 0.64 | 10.0 54.6
Sync | 0.25 0.79 | 23.0 99.5
(A2) |05 0.86 | 32.0 125.2
0.0 0.81 5.4 31.3
Async | 0.0625 || 0.97 9.9 35.9
(As) ]0.25 0.98 | 23.0 79.2
0.5 0.98 | 32.0 109.8

98

Table VI.5: Performance of GSGAs using 12 by 12 grids on each processor, with local
search frequencies 0.0625, 0.25 and 0.5.

VI.G Discussion

These experimental results are consistent with many of the predictions made
by the analysis of the parallel GSGAs. Consider the results in Tables VI.1, VI.2
and VI.3. As expected, the efficiency of the GSGAs is related to the degree of syn-
chronization and communication. GSGA A; has the lowest efficiency, since it requires
an expensive global synchronization. The efficiency of A; is about the same as A,
but it is a bit higher for smaller grid sizes. The efficiency of Aj is higher than the syn-
chronized GSGAs, but it is less than Ay, since this algorithm uses no communication
between the processors.

Note that the results of the synchronized GSGAs exhibit a decline in effi-
ciency as the number of processors increases. This is consistent with the fact that the
synchronization penalty is related to the number of processors that are synchronized.
Since Aj does not use synchronization, the efficiency remains roughly invariant as the
number of processors is varied.

The efficiencies in Table VI.1 are higher than those in Table VI.2. This
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is consistent with the analysis, and reflects the influence of the M parameter. The
GSGAs with 24 by 24 grids spend more time working in parallel than the GSGAs using
the 12 by 12 grids. Note, however, that the efficiencies in Table V1.3 are comparable
to those in Table VI.1. This is surprising since the number of function evaluations
reported in Table V1.3 are midway between those reported in Tables VI.1 and VI.2.
We might expect to have the efficiencies reduced to a point midway between the
efficiencies in Tables VI.1 and VI.2. This suggests that communication costs play a
large role in determining the efficiency for our test problem.

The absolute performance of the GSGAs can be compared using the number
of function evaluations. Since A; and A; are synchronized, they have nearly identical
performance. They differ only because they use different methods of synchronizing
the termination signals, which leads A, to use slightly more function evaluations. The
performance of Aj is roughly the same as the synchronized GSGAs, which suggests
that it is not adversely affected when border areas are out of date. The performance
of A, is consistently worse than the other algorithms.

Comparing the efficiencies in Tables VI.1 and VI.4 allows us to contrast the
box and strip partitioning. The only factors that differ between the two experiments
is that the strip partitioning requires half as many messages as the box partitioning,
but communicates four times as many individuals in the population. For A;, strip
partitioning is better than box partitioning for low numbers of processors and is worse
for large numbers of processors. This is consistent with our comparison of the analytic
efficiency of strip and box partitioning. However, the efficiency of strip partitioning
is slightly better for A;, and is about the same for A3. This suggests that the method
of synchronization may impact the relative utility of the partitioning methods.

Finally, Table VI.5 demonstrates the impact of the local search operator on
the efficiency of the GSGAs. As expected, the efficiency increases as the frequency of

local search increases, for both the synchronous and asynchronous algorithms.
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VI.H Conclusions

The analytic and experimental analysis of MIMD GSGAs demonstrate that
they will scale well for large problems. The comparison of the synchronization meth-
ods indicates that there is no appreciable penalty (in terms of convergence of the GA)
for using asynchronous GSGAs. Since this method has no synchronization penalties,
it is more efficient than the synchronous GSGAs. Finally, these results demonstrate
that local search can be efficiently used with these parallel GSGAs.

One of the arguments for using SIMD machines is the ability to use very
large populations. The largest of these experiments uses 64 processors with 24 by 24
grids. These simulations are executing a parallel GSGA with a 192 by 192 grid that
has a total of 36,864 individuals in its population. These GSGAs remain efficient
for problems of this size, which indicates that MIMD GSGAs can solve the same
problems tackled by SIMD GSGAs. In addition, the MIMD GSGAs offer the ability
to use moderate size populations. A comparison of the results in Tables VI.1 and VI.2
shows that using a very large population may be less efficient than using a smaller
population, in both CPU time and number of function evaluations.

I expect that these MIMD GSGAs will be competitive with other MIMD
GAs, such as the IMGA. Gordon and Whitley [35] show sequential simulations of
parallel GAs in which the performance of GSGAs was competitive with other par-
allel GAs. They note that their simulations used a simple GSGA, and they expect
GSGAs to perform very well when more sophisticated methods are employed. One
such method is the bookkeeping done by our GSGAs to avoid unnecessary function

evaluations. Since GSGAs tend to have greater redundancy in their populations, this

may provide MIMD GSGAs an efficiency advantage over other MIMD GAs.



Chapter VII

Applications

To validate the performance of GA-LS hybrids, I have applied them to sev-
eral practical problems: a neural network problem and to two molecular structural
problems. The neural network problem is the six-bit symmetry problem, which has
been previously optimized with GA-LS hybrids by Belew, Mclnerney and Schrau-
dolph [7]. The first molecular structural problem is the problem of solving for a
molecule’s conformation. This problem has been explored by a number of different
authors [49, 55] and there are experiments with GA-LS hybrids for which a compar-
ison is possible. The second molecular structural problem is the problem of docking
drug candidates to a target macromolecule [34], which is an important problem in
automated drug design. The drug docking results with GA-LS hybrids are compared
with simulated annealing, the optimization method used by Goodwell and Olsen [34].

VII.A Neural Networks

Neural networks are simple parametric models that are thought to loosely
model biological nervous systems [80]. While there are a variety of types of neural net-
works, I have examined feedforward neural networks, which perform a deterministic
mapping from a set of inputs to a set of outputs [81].

Figure VII.1 illustrates a multilayer feedforward neural network. Each node

101
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Output Units

Hidden Units

Figure VII.1: Multilayer feedforward neural network with one hidden layer.

in the network computes a weighted sum of the node’s inputs that is passed into a
logistic function. Let {xy,...,2,} be n inputs to a node, and {w,...,w,} be the

n + 1 weights. Fach node computes
g (wo + Zn: wz’fi)
i=1
where g(x) is the logistic function
g(x) = 1/(1 +exp™).

Because the nodes of the neural network perform a nonlinear transformation of their
inputs, feedforward neural networks are capable of performing nonlinear transforma-
tions of the inputs.

Suppose we are given a set of data {(x1,y1),..., (2, y,)} for which we would
like to know the relationship between the x; and the y;. Feedforward neural networks
are parametric models of the form y = f(x,w), where w is a vector of the weights
(parameters) of the neural network. To estimate the relationship between the a;

and the y;, minimization techniques are used to determine the weight vector w* that
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minimizes
i=1
where E(-) computes the error between the predicted y value and the actual y value,

y;. A common error function is the squared error
E(a,b) = [la —b*

When using a smooth error function like this, the gradient of J(w) is computed for
feedforward neural networks by back-propagating the errors on the outputs through
every layer of the network [81].

The weight vector for neural networks is typically large. Therefore, solving
neural network problems involves the minimization of an error criterion over a high
dimensional search space that has a large number of local minima. In theory, the
global minimum of the search space is desired. In practice, minimization is usually
performed using local search techniques that can only guarantee solutions which are
locally optimal.

Belew, McInerney and Schraudolph [7] use GA-LS hybrids to minimize J(w)
for the six-bit symmetry problem. In the six-bit symmetry problem, patterns are
classified as one if the left three bits are mirror images of the right three bits. Thus
110011 is classified as one, while 101110 is classified as zero. Their experiments use
the GA to control repeated restarts of neural network local searches using back-
propagation (BP). Their results indicate that GA-BP hybrids outperform both the
GA and multistart local search using BP.

The experiments in this section extend these results in two ways. First, the
GA-LS hybrids use local search with various frequencies. Second, the performance of
methods using BP is compared with methods using conjugate gradient and batch BP.
Unlike standard BP, batch BP uses complete calculation of J(w) is used to update

the current weight vector. Thus, Equation I1.1 becomes

Wiy = w + Awy

Awy, = =1 Vo J(w)



104

Batch BP can be viewed as a simple gradient descent procedure. Unlike BP,
the gradient calculation in BP is a reliable estimate of the current descent direction.
Hertz, Krogh and Palmer [39] note that the relative performance of BP and batch
BP is problem dependent, though BP seems superior in many cases.

Table VII.1 compares the performance of MC, MS, GA and GA-LS hybrids
for the three local search methods. The GA-LS hybrids are compared for three fixed
frequencies. This is a relatively easy problem, so the more sophisticated methods of
applying local search selectively were not performed.

Following Belew, Mclnerney and Schraudolph, BP and batch BP were run
for 200 epochs. To make BP comparable to the other methods, evaluations for an
entire epoch are counted as a single function evaluation. These experiments use a
three-layer feedforward network with six input units, six hidden units and one output
unit. Initial weights for the networks were chosen in the interval [—0.5,0.5]. The
learning rule in Equation 1.3 is used to perform BP, with o = 0.5 and 5, = 2.5//1.
Belew, Mclnerney and Schraudolph used n; = 2.5, but this form of 7, worked very
poorly for batch BP. The large o and 75, values identified by Belew, McInerney and

Schraudolph were selected for BP. It is not clear that these are also the best values

for batch BP.

‘ Method ‘ Freq H BP ‘ Batch BP ‘ CG ‘
MC 0.0563
MS 0.0467 | 0.0546 |[1.59-107°
0.0 0.0341
GA 0.0625 | 0.0018 | 0.0535 [7.32-1077
0.25 | 0.0013 | 0.0538 |1.51-107®
1.0 0.0015 | 0.0543 |3.30-107°

Table VII.1: Results for 6-Bit Symmetry.

A statistical analysis of these results shows significant differences between
almost every method. In particular, the GA-CG hybrids are significantly better than
the GA-BP hybrids, which are significantly better than the GA-Batch-BP hybrids.
The GA-LS hybrids appear to be more efficient when used with high frequency of local
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search, but the statistical analysis does not indicate significant differences between
the frequencies of the GA-LS hybrids. It is interesting to note that the methods using
batch BP were worse than the GA alone, while the methods using conjugate gradient
were better than the GA. This attests the inefficient use the gradient information in

batch BP.

VII.B Molecular Conformation

VII.B.1 Introduction

The goal of molecular conformation problems is to solve for the three dimen-
sional structure of a molecule (its tertiary structure), given only a description of the
atoms and bonds that comprise the molecule (its primary structure). One approach
to solving these problems uses a model of the potential energy of the molecule’s con-
formations that is minimized to find conformations with low energy. Most simple
models assume that the conformational energy, V', can be approximated by a sum of

different types of energy contributions. For example, we could define V' as

V= ‘/bond + ‘/angle + ‘/torsion + Vnon—bond + ‘/electrostatic

A detailed description of these terms is given in Le Grand and Merz [54]. Clark,
Cramer and Van Opdenbosch [10] describe many of the “standard” force fields. In-
tramolecular forces are modeled by the terms for bond stretching, bond torsion and

angle valence. The bond stretching term is usually represented as

Viond = Kpona(ri; — 10)?

where r;; is the distance between the :-th and j-th atoms. Vj,,4 1s usually defined
with a relatively large bond constant, Kj,,4, to hold the bond distance fairly constant
at ro. The bond torsion (dihedral) term measures the energy related to the stresses
put on double bonds. This energy is often quite specific to the type of bond that is
modeled. Le Grand and Merz [54] distinguish the angle valence energy from other
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torsion energies

L.
Vangte = §fﬁei]k(9¢jk — 0p)?

where 0,1, 1s the angle between the bond linking the :-th and j-th atoms and the bond
linking the j-th and k-th atoms. Like the bond stretching term, V,,, ;. measures the
energy added by moving a bond pair from its ideal angle. The intermolecular forces are
modeled by the terms for non-bonded interactions and electrostatic interactions. The
non-bonded interactions account for van der Walls forces, which are often modeled

with Lennard-Jones 12-6 potentials

12 6
r* r*
inon—bond =€ 2e
TZ']‘ TZ']‘

The electrostatic interactions account for interactions between particle charges on

atoms. The typical, point charge interaction uses a simple Coulumb expression

6id;

‘/electrostatic — i

where ¢; and ¢; are particle charges, and ¢ is the dielectric constant of the medium in
which the molecule is located.

I consider a simple two dimensional conformation problem that is examined
in Judson et al. [49]. This conformation problem concerns a molecule composed of
a chain of identical atoms that are connected with rigid rods of length one. The

potential energy of this molecule can be modeled by

V= Vien—tond (VIL1)

ZZ [(i) - (i)] (VIL2)

This equation accounts for the van der Walls forces in the non-bonded interactions.

This function has two types of local minima: knotted and unknotted. Ex-
amples of these two types of configurations are shown in Figure VIL.2. Figure VII.2a
is a knotted configuration, in which the bonds of the molecule cross at some point.

Local search methods cannot pull an atom through a knot because there is a very



107

(a) (b)

Figure VIL.2: Examples of (a) knotted and (b) unknotted configurations. Configura-

tion (b) is a global minimum of the energy function for the 19-atom molecule.

high energy barrier preventing this. The global minima of this function are approx-
imately located on a hexagonal grid with unit spacing. Figure VII.2b is an example
of a global minimum. When minimizing a 19-atom molecule, the global minima are

known to have a value of -45.3 [49].

VII.B.2 Parametrization

The distance terms r;; can be parameterized in two ways: (1) using the co-
ordinates of the atoms, and (2) using the bond angles and bond lengths. Figure VIIL.3
illustrates the relation of these parameters to the structure of a simple molecule. An-
alytic gradients can be calculated for either of these parametrizations, but the angle
parametrization is easier to use with GAs since the constraints on the bond lengths
are implicit in this representation. Minimizing the energy with the coordinate rep-
resentation would require the use of constrained optimization techniques to keep the
bond lengths at a fixed value.

Since the global minima are approximately located on a hexagonal grid, the
angles of the global minima are near multiples of #/3. We can use this information
about the problem to discretize the space of angles, thereby reducing the space of
solutions that are searched by the GA. However, the solution must still be minimized

in the continuous space of angles, since the optimal solution may not be an exact
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(Xa,Y4)

Figure VIL.3: Tllustration of a simple molecule with dimensions used to parametrized

the potential energy.

multiple of 7/3. Thus the GA and local search routines are searching different spaces.

This is an example of a genotype-phenotype distinction, which was mentioned
in Section I1.C.3. A maturation function is used to map the genotype generated by
the GA into the space of phenotypes used by the local search method. In this case,
the mapping is simply the identity map. To perform Lamarckian local search, a
reverse map is also needed. In the experiments reported below, the reverse map
simply discretizes the angle 6 to 6" using the following rule:

ez

s

VII.B.3 Results

I have tested the efficiency of GA-LS hybrids using both the angle and
discrete angle representations. For comparison, the performance of MC, MS and the
GA have also been tested. A GA with an integer representation is used to search the
discretized angle space. The mutation operator for this integer GA changes a single
integer to a uniformly selected integer in the set of possible discretized angles. The
MC and MS methods were also modified to uniformly generate discrete angles and

then perform local search in the continuous angle space.



Method | Angles | Discr Angles
MC -27.76 -26.83
MS-SW | -30.74 -30.45
MS-CG | -29.09 -28.67
GA -28.57 -31.27

Table VII.2: Results for MC, MS and GA on the 2D conformation problem.
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Method | LS Freq Angles Discrete Angles
GA-SW | GA-CG || GA-SW | GA-CG

Fixed 0.0625 -32.47 | -30.93 -42.23 | -40.88
Freq 0.25 -32.86 | -31.30 -42.12 | -38.21
1.0 -33.71 -31.16 -40.56 | -36.51

Inequ 0.0625 -32.53 | -31.00 -42.14 | -41.10
Metric 0.25 -33.11 -31.12 -42.04 | -37.77
1.0 -33.17 | -32.05 || -40.02 | -36.39

Ly 0.0625 -32.83 | -30.47 -43.01 -42.96
Metric 0.25 -32.88 | -31.12 42,74 | -42.83
1.0 -33.81 | -31.15 -42.95 | -41.41

Ly 0.0625 -31.07 | -29.33 -42.92 | -43.10
Metric 0.25 -32.11 -29.52 || -43.01 | -42.93
Adaptive | 1.0 -33.45 | -30.57 -42.83 | -42.29

Table VII.3: Results for GA-LS hybrids on the 2D conformation problem.

Table VII.2 shows the average performance of MC, MS and GA after 150000
function evaluations. Table VII.3 shows the average performance of the GA-LS hy-
brids using the local approximation methods.

The performance of the GA-LS hybrids is significantly better on the discrete
angle representation. Note that the dynamics of the GA-LS hybrids differ on the two
representations. On the angle representation, high local search frequencies are more
efficient, though a statistical test did not reveal significant differences between the
methods. On the discrete angle representation, low local search frequencies are more
efficient. A statistical test did not reveal significant differences between the different
GA-SW hybrids, but the GA-CG hybrids using the Ly metric are significantly better

than the GA-CG hybrids using fixed frequency and the inequality metric. Finally,
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the GA-LS hybrids are significantly better than MC, MS and GA.

These results are not directly comparable to those of Judson et al. [49] since
they report the final results after 107 function evaluations. However, they report that
the best solution found with their GA-CG hybrids is -44.3. After 150,000 function
evaluations, the best solution found by these methods was -44.2. Further, when
GA-LS hybrids were used with elitism the best solution found was -45.3, the global
optimum! Both of these results require the discretized angle representation, which
was not used by Judson et al. The best result for the GA-LS hybrids using the

continuous angle representation was -35.9 after 150,000 function evaluations.

VII.C Drug Docking

One of the key elements of computer aided drug design is the docking of po-
tential drug candidates to a target macromolecule. Manual methods of docking have
been widely used [88]. They use sophisticated energy evaluations, but only allow
the user to examine a limit number of docking conformations. The docking method
described by Goodsell and Olsen [34] examines a large number of docking confor-
mations automatically. This method uses simulated annealing (SA) to search the
conformation space (see Section I1.B.3) and performs rapid energy evaluations using
molecular affinity potentials. Goodsell and Olson do not make a direct comparison
with other automated docking methods like exhaustive search, but they note that
methods like exhaustive search require simplified energy evaluations to avoid pro-
hibitively expensive computational costs. They argue that the sophisticated search
performed by SA enables them to use robust energy evaluations while maintaining
reasonable computational costs.

The experiments in this section compare the performance of the GA and
GA-LS hybrids to SA on a docking problem that models the docking of an inhibitor
for HIV protease. Evaluations of the docking conformations were performed using

the Autodock software developed by Olson et al. [70]. The conformation energy was
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evaluated using molecular affinity potentials, as described by Goodford [33]. The
macromolecule is imbeded in a three-dimensional grid, and the energy of interaction
is calculated for different atom types at every location of the grid. These energies are
stored in tables that are used to rapidly compute the energy of a given conformation.
Energies outside of grid have a default value of 1.0e5.

This docking problem has a total of 19 parameters. Three parameters
specify the coordinates of the centroid of the molecule. The coordinates located
on the grid are within the box defined by the points [—9.401, —5.022, —15.038] and
[9.349,13.728,14.962]. Four parameters specify the quarternion (¢, ¢y, ¢-), ¢w. The
values ¢, g, and ¢, specify a unit vector (i.e. ¢2 + qz + ¢. = 1). This describes
the direction in which the molecule will be rotated by ¢, degrees. The remaining
parameters specify the torsion angles of twelve rotatable bonds in the molecule, also
in degrees.

The docking potential was minimized with SA using the Autodock software.
Autodock starts SA using starting coordinates of the molecule at (—2.0,5.0,7.7), the
initial quarternion at (1,0,0),0, and the initial torsion angles are uniformly generated.
The initial temperature for SA is 5000.0, and the temperature is reduced by a factor
of 0.85 every cycle, so after k cycles the temperature is 5000.0(0.85)%. SA was run
for 50 cycles, each of which ran until 30,000 accepting states were found. To enable
comparisons with the other methods, energy evaluations for conformations located
outside the grid were counted as function evaluations.

To minimize the docking potential using the GA and GA-LS hybrids, the
ranges of each of the parameters are normalized to [0.0,100.0]. This normalization
insures that mutations made to each dimension of the docking potential have the
same chance of making changes of the same proportion. Preliminary experiments with
GAs using unnormalized parameters had poor performance. Also, the quarternion
parameters specifying the unit vector are not normalized to a unit length until the

potential of each solution is evaluated. Thus, mutation treats all of the parameters

uniformly. Finally, elitism is used in the GA and GA-LS hybrids.
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Method ‘ Freq Average Best
MC 184.5 19.7
GA -28.6 -93.4
SA -98.7 | -107.9
GA-LS | 0.0625 -94.7 | -117.0

1.0 -108.4 | -118.0

Table VII.4: Results for docking problem.

Table VII.4 compares the performance of MC, GA, the GA-LS hybrids and
SA after 1.5 - 10° function evaluations. The average is over 5 repeated trials. A
statistical test of these results indicates that the GA-LS hybrids with frequency 1.0
are significantly better than MC. No other differences are significantly different. Fig-

ure VII.4 graphically compares the performance of these methods.

VII.D Summary and Discussion

The results of these applications demonstrate the relative efficiency of the
GA-LS hybrids on a variety of different types of objective functions. In each of these
applications, the GA-LS hybrids perform much better than MC, MS and the GA.

The results for the neural network problem illustrate the influence of the ef-
ficiency of the local search method. In particular, the comparison between GA-Batch-
BP and GA-CG illustrates that GA-LS hybrids are not necessarily more efficient than
the GA. Batch BP uses gradient information so inefficiently that the GA-Batch-BP
hybrid has worse performance than the GA alone.

The experiments with the 2D molecular conformation problem confirm that
the adaptive methods can significantly improve the performance of GA-LS hybrids.
Further, these results provide evidence of the trade off between the reliability of
the competitive selection and the refinement of the local search. Using the discrete
representation constitutes an a priori bias since it focuses the GA’s search on a subset

of the entire conformation space. For this problem, this bias improves the performance
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Figure VII.4: Optimization results for docking of inhibitor for HIV protease.

of the GA and, consequently, makes low frequencies of local search most efficient.
Finally, the results for the drug docking problem compare the efficiency
of the GA-LS hybrids with SA. The GA-LS hybrids compare favorably, even after
1.5 - 10° function evaluations. Further, Figure VIL.4 shows that the GA-LS hybrids
perform much better at higher e-accuracies. In fact, I expect that the performance of
the GA-LS hybrids could be improved by performing local search with the neighbor-
hood structure used in SA. The SA routine provided in Autodock performs a special
transformation of the quarternion parameters when generating local neighbors. This
transformation is probably more appropriate than the neighbors generated by the
normal deviates used in Solis-Wets, so the comparison between the GA-LS hybrids

and SA is conservative.



Chapter VIII

Conclusions

VIII.A Conclusions

The research in this dissertation has examined two general issues relating
to GA-LS hybrids. First, [ have addressed questions concerning the best use of local
search with the GA and have described methods that provide significant improvement
over standard GA-LS hybrids. The frequency of local search was the most influential
parameter in our methods, and an analysis of GA-LS hybrids using a fixed frequency
of local search provided considerable insight into the way the GA and local search
algorithms interact. Our results indicate that the type of GA can influence the manner
in which the local search algorithm should be used with the GA. For example, I have
shown that my methods of reducing the local search frequency work particularly well
with GSGAs, which have a many similar solutions in their populations.

I have also described parallel GSGAs that can efficiently utilize local search.
These parallel GAs are a MIMD design of a GA initially implemented on SIMD ar-
chitectures, where local search is difficult to apply selectively. The analysis of these
parallel GSGAs indicates that they scale well to large populations, which is confirmed
by an experimental analysis. These experiments recommend the asynchronous GS-
(GAs since they perform well and have no synchronization penalties. MIMD GSGAs
have been used with populations of up to 36,864 individuals, and I have argued that

114
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they can be used to tackle the same problems to which SIMD GSGAs have been ap-
plied. Further, I have noted that previous results indicate that these MIMD GSGAs
will be competitive with other MIMD GAs.

GA-LS hybrids have also been used to solve problems in three different appli-
cation domains: neural networks, molecular conformation and drug docking. These
results confirm many of the observations made in the analysis of GA-LS hybrids.
They confirm that using the adaptive methods can significantly improve the perfor-
mance of GA-LS hybrids. A comparison is also made with simulated annealing, which
demonstrates that GA-LS hybrids can perform better than simulated annealing, even
after 1.5 - 10° function evaluations.

This dissertation has made two other technical contributions. First, I have
analyzed the performance of probabilistic multistart. This analysis proves that se-
lecting local search with a fixed probability is worse than the best of either MC or
MS. This suggests that selectively applying local search will only be useful if either
the global or local search method is used adaptively.

I have also described a generalization of the biological notion of the F statis-
tic. The F statistic has been generalized to provide a measure of similarity for ar-
bitrary distance metrics and has been related to the method of fitness sharing. The
generalized F statistic is used by the distribution-based methods to selectively apply

local search.

VIII.B Implications for Biological Models

Section II.C.3 noted that much of the inspiration for GA-LS hybrids comes
from natural systems. Evolutionary algorithms like the GA take many cues from
mechanisms observed in natural evolution, and local search is often equated with
models of learning. Conversely, this research on artificial methods of adaptive search
may have implications for models of evolution and learning in natural systems.

The superior performance of the GA-LS hybrids when compared with the
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GA appears to provide confirmation of the “Baldwin Effect” [6, 40]. The experiments
in Chapters V and VII indicate that learning can improve the efficiency of the GA.
Consequently, GA-LS hybrids run for fewer generations than the GA. From a biolog-
ical viewpoint, this can be viewed as an increased rate of evolution, which is a prime
indication of a Baldwin effect. Note that the efficiency of GA-LS hybrids is improved
even with simple local searches like Solis-Wets. This is important in natural systems
where it is unlikely that additional information (like derivative calculations) is avail-
able to guide learning, but the local sampling of the type performed by Solis-Wets is
not entirely unreasonable.

The experiments in Chapter VII demonstrate that there are many occasions
in which GA-LS hybrids are most efficient when local search is applied infrequently.
For example, low local search frequencies are more efficient when using large popu-
lations or when using elitist GAs which have strong selective pressure. These results
suggest that the fitness of the entire population may be improved even when only a
fraction of the population is applying learning methods.

The distribution-based methods of adapting the local search frequency are
reminiscent of the effects of inbreeding depression [38], and may be useful for studying
the effects of inbreeding on learning in natural systems. Inbreeding depression refers
to the detrimental effects of inbreeding, which is indicated by a high F statistic
for an individual. Now consider a GA-LS hybrid as a model of natural evolution
and learning. By itself each individual in a population would naturally want to
have a high probability of performing local search since that would maximize its
fitness. However, the distribution-based methods lower an individual’s local search
frequency if its F statistic is high. This is analogous to the effect of inbreeding on
phenotypic characteristics, where the local search frequency is viewed as a phenotypic
characteristic of the individual.

Two differences between GA-LS hybrids and models of natural systems must
be considered when examining the biological implications of the results in this disser-

tation. First, the fitness of individuals in natural systems is often dependent on the
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behavior of other individuals in the environment. In GA-LS hybrids, the fitness of
individuals is independent of the fitness of other individuals in the population. As a
result, the optimal solutions identified by a GA-LS hybrid may not correspond well
with individuals in natural systems. Alternatively, populations of solutions that are
optimal with respect to an independent fitness measure may be susceptible to inva-
sion from nonoptimal solutions when evolved using a dependent fitness measure. In
this case, the optimal solutions are not biologically plausible. This phenomenon was
observed in Ackley and Littman’s artificial life model [3]. Nowak and May observe
similar phenomena in the context of game theory [69].

The second difference concerns the manner in which the rate of evolution is
measured in natural systems and in GA-LS hybrids. There are three ways the cost
of GA-LS hybrids can be evaluated. First, the cost of each generation is the sum of
every operation applied to every individual (assuming a serial algorithm). When local
search is applied infrequently, the cost of each generation decreases correspondingly.
This is the most common method used in computational contexts. Second, the cost of
the local search can be ignored completely, and the number of generations of the GA
is used to measure the cost of the search. This measure has been used by Hinton and
Nowlan [40] and Nolfi, Elman and Parisi [68]. Finally, the cost of each generation can
be equated with the length of the longest local search performed in the population.
Thus if local search is used by any individual in the population, there is no additional
penalty incurred by allowing the rest of the population to perform local searches. This
is probably the most biologically plausible cost measure, but it assumes a synchronous

mating schedule which may not be a biologically plausible assumption.

VIII.C Future Directions

The methods that I have examined represent initial studies of some impor-
tant areas of investigation. I describe some immediate extensions of this research and

discuss some broader issues that need to be explored.
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VIII.C.1 GA-LS Hybrids

I have considered a basic set of GA-LS hybrids that can be extended in a
number of directions. First, additional methods of distribution- and fitness-based
selection of local search may be of interest. The emphasis of this research is on
distribution-based selection methods, but there are a variety of fitness-based methods
that I have not considered here. As I noted earlier, most of the methods used to
perform competitive selection in GAs can be used to perform fitness-based selection
of local search. Furthermore, it is possible to combine distribution- and fitness-based
methods, which I expect to combine the advantages of both.

The experimental results indicate that the type of GA used with local search
can strongly influence the performance of the GA-LS hybrids. To simplify the analysis
of the interactions between the GA and local search algorithms, relatively simple GAs
were used in this dissertation. It is clear that further work needs to be done with
GA-LS hybrids that use more sophisticated GAs. Methods like rank and truncation
selection employ a stronger selective pressure, which focuses the GA’s search more
rapidly. Because of this stronger selection pressure, we expect that hybrids with these

methods will require infrequent local search.

VIII.C.2 MIMD GSGAs

The most important extension of the results with MIMD GSGAs involves
a comparison of this method with other MIMD GSGAs. Previous research with
sequential models of parallel GAs indicates that MIMD GSGAs should be competi-
tive with other MIMD GAs, but a direct comparison is needed to examine how the
communication and synchronization costs affect the overall performance of MIMD
GSGAs.

There are a number of other technical issues that are also worth investigat-
ing. First, the efficiency of the GSGAs may be improved by “pipelining” requests

for data between the processors. Since only a fraction of the grid on each processor
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is communicated with its neighbors, it is possible to evaluate the individuals in the
border regions first, perform communication with its neighbors, and then evaluate
the rest of the individuals. This interleaving of communication and execution should
offset some problems of load imbalance, and should improve even the asynchronous
GSGA.

Another issue that needs to be addressed is the manner in which redundancy
is handled in the GSGAs. The experiments with sequential GSGAs indicate that
GSGAs have a lot of redundancy in the population. In preliminary experiments, |
found that the redundancy was increased when the L, metric was used to reduce
the local search frequency. The problem with this increased redundancy is that the
cost of the selection mechanisms became the principle cost of each iteration of the
algorithm. There are two ways that this problem could be handled. First, stopping
conditions could be introduced that terminate the simulation once the redundancy in
the population reaches a specified threshold. Second, the selection mechanism could
be modified to avoid performing selection on local neighborhoods that contain a single
solution. More research with these methods is needed to understand which of these
is the better alternative.

Finally, I believe that there may interesting dynamics in the interaction be-
tween the shape of the GSGA’s neighborhood structure and the shape of the partitions
used to decompose the two-dimensional grid. For example, suppose strip partitions
are used and let the GSGA’s neighborhood be rectanglar. The height of the rectanglar
neighborhood affects the size of the border regions communicated between processors.
This has implications for the complexity of the GSGA, but I also expect this to affect
the rate at which solutions are communicated between processors. Larger border re-
gions should make it easier to communicate solutions between processors. Similarly,
the width of the rectangular neighborhood affects the iteractions of individuals on
the same processor. Very wide neighborhoods should facilitate the transmision of
more optimal solutions to other parts of the processor’s grid. Thus it appears that

these two dimensions of the neighborhood structure can influence the inter-processor
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and intra-processor communication of solutions. The best balance between these two

factors is not obvious, especially when non-square grids are used.

VIII.C.3 General Issues

The following are several general issues that are related to the current work

and are worthy of investigation.

Constrained Optimization The focus of this dissertation has been on uncon-
strained global optimization. Several researchers have recently proposed methods
that apply GAs to constrained optimization problems. A natural extension of these
results would be to use GA-LS hybrids that combine GAs and local search meth-
ods that utilize constraint information. This approach seems promising for problems
with highly nonlinear constraints that impose numerous local optima on the objective

function.

Discrete Optimization These results offer an understanding for GA-LS hybrids
that optimize functions defined on R". I believe that the analysis of these GA-LS
hybrids will generalize well to problems on a discrete domain. All of the mechanisms
for selectively applying local search are independent of the search space, so they
should be applicable to discrete problems. I still expect that it will be harder to
generalize results from one discrete problem to another, but the discrete search space
may make it easier to formally analyze the trade-off between competitive selection

and local search.

Extended Applications The results with the molecular structure problems can
be extended in a number of different directions. Scaling these problems to higher
dimensions should be interesting. Since solutions to these problems are expensive
to evaluate, sophisticated optimization methods are particularly important in higher

dimensions. The reduced local search rate provided by the distribution-based methods
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should be particularly useful here. Also, conformation of more realistic molecules can

be performed to evaluate the potential of this approach.



Appendix A

Generalizing the F Statistic

Consider a diploid individual with two chromosomes X and Y. These chro-
mosomes can be decomposed into a sequence of alleles, { X7,..., X, } and {Y7,..., Y, }.
The biological notion of F statistic provides a metric for analyzing the similarity of X
and Y with respect to a randomly mating population. When averaged over the entire
population, the F statistic provides a measure of the inbreeding, or homogeneity of
the population.

The biological definition of the F statistic simply measures the average num-
ber of points at which X and Y differ. We generalize the definition of the I statistic
to allow for other distance measures between two chromosomes. As a consequence,
the generalized F statistic can be computed for chromosomes on any space for which

a distance metric is available.

A.A Formalism

Hartl [38] defines the inbreeding coefficient of an individual (relative to the

total population) to be

where

122
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o Hp - the expected heterozygosity of an individual in an equivalent random

mating total population
e Hj - the heterozygosity of an individual

Hj can be interpreted as either the average heterozygosity of all of the genes in an

individual or as the probability of the heterozygosity of any one gene. Let

0, a; = aj

1

5(@2', Cl]‘) =

, otherwise

where a; and a; are two values of alleles. Then we can define the difference between

two sets of alleles as

1 n
DUX.Y) = =3 6(Xi.Yi) = iy
=1

Note that this equation is independent of the cardinality of the set of alleles which
are contained in the individual. The only thing that matters is that the alleles are
different.

The value of Hr can be formulated using D;. Let P be a distribution over

the space of possible sets of genes, (G. Then
Hy = / / Di(X,Y)dP(X)dP(Y)
aJa

The dependency on the distribution P makes the F statistic relative to the level of

inbreeding that was present in the initial population.

A.B Generalization

The distance measure Dy provides a notion of distance that depends on
whether the individual alleles in X and Y are different. If we consider alleles that
assume values in an arbitrary space, we may have a notion of distance between the
alleles. In these contexts, the measure D7 will be unnecessarily crude. Further, Dy

will be inappropriate when |G| is not finite.
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Note that D is a metric on G. Given a metric Dy on a different space
of genotypes, G', we can use the formulas for Hy and H; to compute a generalized
F-statistic. The difficult part of using the definitions in a general setting is the
computation of Hy. For example, let G' = [A, B]" and let Dy be the L, norm

Dy(X.Y) = [ X — Vo = | (s — w)?

i=1

then the computation of Hr is very difficult, even when P is the uniform distribution.

We now examine two metrics that can be analyzed when P is the uniform
distribution. These metrics will be useful when estimating the F-statistics of indi-
viduals in GA’s with floating point encodings. The initial population of the GA 1is
typically created by sampling from a uniform distribution over (&, so these F-statistics
will be appropriate.

Let ' = [A, B]", and let Dy be the L; norm

Dy(X,Y) =X =Yy =) |wi —uil,

=1
then

HT:%B—M

if P is uniform. If D is the squared L, norm

DAX,Y) = 1X = VI = (e — yi)?
=1
then

fﬁ:g@—AV
if P is uniform.

Similarly, let G' = {A,..., B}". If Dy is the L; norm then
n(B—A)(B—-A+2)
3(B—A+1)
If Dy is the squared Ly norm then
n(B—A)(B—-A+2)
6

The generalized F statistic assumes values less than or equal to one. The F

statistic is zero if the distance between the chromosomes is equal to Hp



Appendix B

Analytic Gradients for the 2D

Conformation Problem

This appendix describes the equations used to analytically calculate the

derivative for the simple conformation problem consider by Judson et al. [49].

o=+ () - (5)]

where r;; is the interatom distance

rig = /(i — 2)? + (i — )%

The angles o are used to calculate the coordinates x and y. Note that the angles

begin with a4, but we add oy = 0. Let

k
®k = ZO@
=1
then (x9,y0) = (0,0), and
i—1
xi =Y cos(Oy)
k=0

1—1
yi = )_sin(O})
k=0

We use the chain rule to calculate %.
af (r )" (r)°\ | Or
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Assuming that j > 2, we have
6(157 Z cos(0,,) = Z sin(Oy)
QOm k= k=max(i,m)
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Now we can redefine =&
dam

877 1 it . it
f=—e—a)( DD sin(Ok)) F (yi— (= Dl cos(O))
aOém T'ij k=max(i,m) k=max(i,m)

and observe that this is zero when m < 2. Assuming that m > 2, note that

7—1
cos(Oy) = — ;)
k=m
7—1
sm (ym - ?Jj)
k=m
Thus
87“2" 1
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Combining terms, we get

day,
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