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ABSTRACT OF THE DISSERTATIONAdaptive Global Optimization with Local SearchbyWilliam Eugene HartDoctor of Philosophy in Computer Science & EngineeringUniversity of California, San Diego, 1994Professor Richard K. Belew, ChairThis dissertation examines the performance of genetic algorithm (GA) hybrids thatuse local search to solve global optimization problems. GAs are a class of adaptiveglobal sampling methods that take many cues from mechanisms observed in naturalevolution. GAs maintain a population of solutions that are used to generate newsolutions in the search space. GA hybrids using local search (GA-LS hybrids) aremotivated by the apparent need to employ both a global and local search strategyto provide an e�ective global optimization method. Previous experimental resultshave found that GA-LS hybrids not only �nd better solutions than the GA, but alsooptimize more e�ciently.To improve the e�ciency of GA-LS hybrids, I propose and experimentallyvalidate methods that selectively apply local search to solutions in the GA's popula-tion. First, local search is randomly applied with a �xed frequency. Experiments withthis method illustrate a trade-o� between the re�nement performed by local searchand the reliability of the competitive search performed by the GA. Next, I describe twoclasses of adaptive methods. Distribution-based adaptive methods use redundancy inthe population to avoid performing unnecessary local searches. Fitness-based adap-tive methods use the �tness information in the population to bias the local searchtowards individuals that have better �tness. An experimental analysis indicates thatthese adaptive methods can signi�cantly improve the e�ciency of GA-LS hybrids.xv



This dissertation explores implications of these results for parallel GAs. Inparticular, a MIMD design for geographically structured genetic algorithms (GSGAs)is described. GSGAs were initially developed for SIMD architectures, where it isdi�cult to selectively apply local search. An analytic and experimental analysis ofMIMD GSGAs demonstrates that they scale well for large problems.GA-LS hybrids are used to solve global optimization problems in severalapplication domains. First, GA-LS hybrids are used to �nd the weights of a neuralnetwork to solve the six-bit symmetry problem. Next, they are used to solve a simple19 atom molecular conformation problem. Finally, they are applied to a drug dockingproblem. When compared to simulated annealing, GA-LS hybrids not only �nd bettersolutions and optimize more e�ciently.
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Chapter IIntroductionI.A Global OptimizationMany practical engineering problems can be formulated as optimizationproblems using an objective function whose domain, D, represents the space of feasi-ble solutions (points) and whose range represents the relative utility of each solution.Solving the optimization problem requires the computation of the global minimaor maxima of the objective function. Without loss of generality, assume that theobjective function is minimized and that there is a unique global minimum. Thisdissertation examines objective functions of the form f : D ! R, D � R. The aimof global optimization is to �nd x� such thatx� = arg minx2D f(x):In practice, we need to account for the fact that numerical procedures can onlyproduce approximate answers. Hence we consider the problem solved if for some� > 0 we �nd a solution in the level set Ld, where d = f(x�) + � andLd = fx 2 D j f(x) � dg:We say that a solution x 2 Ld is �-accurate.Powerful local search techniques have been developed to solve optimizationproblems. A local search algorithm is one that iteratively improves its estimate of1



2the minimum by searching for better solutions in a local neighborhood of the currentsolution. The neighborhood of a local search algorithm is the set of solutions thatcan be reached from the current solution in a single iteration of the local searchalgorithm. Local search techniques have been developed for which stopping conditionscan terminate the search at a local minimum of an objective function. If nbhd(x) is alocal neighborhood of x, then x is a local minimumif f(x) = minff(y) j y 2 nbhd(x)g.In general, local minima are not guaranteed to be global minima. Conse-quently, global optimization methods have been developed to perform a sophisticatedsearch across multiple local minima. Global optimization is an inherently di�cultproblem since no general criterion exists for determining whether the global optimumhas been reached.I.B Adaptive Global OptimizationT�orn and �Zilinskas [91] observe that two competing goals govern the designof global optimization methods. Global reliability is needed to ensure that every partof the domain is searched enough to provide a reliable estimate of the global optimum.Local re�nement is important since the re�nement of the current solution will oftenproduce a better solution. Most global optimization algorithms achieve these twogoals using a combination of a global strategy and local strategy.This dissertation focuses on global optimization methods that combine adap-tive global sampling methods with local search. Adaptive global sampling methodsvary the sampling distribution depending upon the objective function's values onpreviously sampled solutions. This adaptation usually biases the sampling towardsregions of the search space where near-optimal solutions have been discovered. Ge-netic algorithms (GAs) are an interesting class of adaptive global sampling methodsthat take many cues from mechanisms observed in natural evolution. GAs maintaina population of solutions that are used to generate new solutions in the search space.They adapt their global sampling by performing a competition between solutions that



3selects better solutions with greater frequency. The competitive selection at each iter-ation (generation) of a GA biases the sampling performed in subsequent generations,thereby adapting the global sampling.T�orn and �Zilinskas' observation suggests that when a GA is used as a globalfunction optimizer, its standard operators be augmented with the ability to performlocal search. GA hybrids that use local search (GA-LS hybrids) can use local searchin one of two ways. GAs and local search can be applied in separate phases, usinglocal search to re�ne solutions generated by a complete run of the GA. Alternatively,local search can be applied to solutions in each iteration of the GA. This type ofGA-LS hybrid is particularly interesting because the global and local search methodscan in
uence each other's behavior. An important example of this phenomenon isthe Baldwin e�ect [6, 40] in which learning in natural systems speeds up the rate ofevolutionary change. Similar e�ects have been observed by a number of authors usingGA-LS hybrids [7, 40, 50]. The research in this dissertation examines the second typeof GA-LS hybrid.I.C Genetic Algorithms with Local SearchPrevious experimental results con�rm that GA-LS hybrids not only �nd bet-ter solutions than the GA, but also optimize more e�ciently [7, 61]. It is noteworthythat these results examine a limited number of algorithmic combinations of the GAwith local search. I believe that important algorithmic combinations have been over-looked and that the standard GA-LS hybrids of the GA and local search should bereconsidered.In this dissertation, I propose and experimentally validate several non-standard GA-LS hybrids. The following issues have motivated the algorithmic com-binations that are examined.I. How often should local search be applied? Standard GA-LS hybrids applylocal search to every individual in the GA's population. While this design makes full



4use of the potential information provided by the local search, the cost of the localsearch method places constraints on the GA-LS hybrids. For example, the cost ofthe local search method has constrained many researchers to use small populationssizes in order to allow the GA to run multiple generations. Further, applying localsearch to every individual is does not necessarily improve the e�ciency of the GA-LShybrid's search since local searches may be done on solutions which are clearly notnear the global optimum. I propose methods for which the frequency of local search isautomatically adapted, and describe how the optimal local search frequency is relatedto the type of problem being optimized.II. On which solutions should local search be used? If local search is notapplied to every individual in a population, then we need to decide how individualsare selected for local search. The simplest method of selecting individuals is uniformlyat random. I describe more sophisticated methods that use information from thepopulation to bias the selection of individuals for local search. First, I describemethods that use the redundancy of solutions in the population to modify the rateat which local search is applied to each individual. These methods reduce the chancethat an individual will be used for local search if that solution is similar to otherindividuals in the population. I also describe methods that use the values of solutionsin the population to select individuals for local search that are more optimal.III. How long should the local search be run? The basin of attraction of alocal minimum is the set of solutions from which local search will converge to thatlocal minimum. When using local search in the basin of attraction of the globaloptimum, one clearly wants to perform a complete minimization to the global opti-mum. However, when performing local search in other basins of attraction, completeminimization may not be necessary. If the GA-LS does not require re�ned solutionsto discriminate between two regions of the search space, then complete minimizationmay not be necessary. I examine this issue by comparing the e�ciency of GA-LShybrids using several local search lengths.



5IV. How e�cient does the local search need to be? It is often possible to haveseveral local search methods available for a particular search domain. For example,when optimizing smooth functions on Rn, numerous local search methods have beenproposed using derivative information to perform the local search. One is often facedwith a choice between two or more local search methods with di�erent e�ciencies,such that the more e�cient local search algorithms are more expensive to run. Whenselecting a local search method for a GA-LS hybrid, the cost of the local search andits e�ciency are both factors that may a�ect the overall e�ciency of the hybrid. Toevaluate the e�ect of this trade-o�, I examine GA-LS hybrids that apply local searchalgorithms which use di�erent types of derivative information.Taken together, issues I and II pertain to the manner in which local searchis selectively applied to the GA's population. These issues are the central focus ofthe experimental analysis of GA-LS hybrids, and factors relating to the remainingissues are considered as part of this analysis. Our approach is to improve these GA-LS hybrids by introducing mechanisms to selectively apply local search within eachgeneration. These mechanisms provide a general means for reducing the numberof local searches that can be used with a wide variety of optimization problems.My thesis is that selectively applying local search can improve the e�ciency of eachiteration of the GA while preserving the bene�ts of the hybridization.I.D Parallel Genetic Algorithms with Local SearchResearch on GA-LS hybrids has been performed on both sequential andparallel architectures (see McInerney [56] for a review of parallel GAs). Parallel GAshave been motivated by the need to process large populations when solving highdimensional problems. They are also important when solving problems for which theobjective function is expensive to evaluate.Most of the research on parallel GA-LS hybrids has been performed withcoarse-grained MIMD architectures. These computers o�er parallelism among a lim-



6ited number of processors that run asynchronously. McInerney [56] has also analyzedGA-LS hybrids on a �ne-grained SIMD architecture, the CM-200. This computero�ers parallelism among a very large number of processors that execute each instruc-tion synchronously. Asynchronism is particularly important because GA-LS hybridsare naturally asynchronous. The time needed to perform a local search can varydepending on the starting point, and the local search algorithm itself may not beamenable to a SIMD parallelization. To account for these constraints, McInerney'sSIMD GA-LS hybrid uses a truncated local search in which all individuals in thepopulation take a few steps in the gradient direction.I propose and analyze a MIMD design for geographically structured geneticalgorithms (GSGAs). The SIMD GAs examined by McInerney and others are calledGSGAs because they spatially structure the adaptive search performed by the GA.Gordon and Whitley [35] have recently argued that the algorithmic nature of GSGAsmay be of interest independent of their implementation on a particular architectureand observe that their performance is competitive with other parallel GAs.1 Ananalytic and experimental analysis of MIMD GSGAs demonstrates that they scalewell for large problems.I.E Dissertation OverviewThe issues and contributions outlined in the previous sections are elaboratedin the following dissertation chapters. Chapter II presents background material inlocal search, global optimization and genetic algorithms. It also discusses previouswork that is related to the research presented in this dissertation.Chapter III presents a simple extension of the multistart algorithm, whichperforms local search using a nonadaptive global sampling method. The new algo-rithm uses local search with a �xed frequency, which can be viewed as a simple formof selecting points to perform local search. This analysis indicates that for any given1For technical reasons, GSGAs are called Cellular GAs by Gordon and Whitley.



7function, it is always more e�cient to perform local search with frequency of eitherzero or one. Thus, this simple form of selecting local search does not improve themultistart algorithm.Chapter IV reviews my previous research that analyzes the complexity ofthe optimization problem for the GA. I conclude that the space of possible functionsis an important aspect of any analysis of the GA's performance, which leads us toconsider a set of test functions on Rn. Finally, I describe a GA that uses a 
oatingpoint representation.Several methods of selectively applying local search in GA-LS hybrids areproposed in Chapter V. The �rst simply uses a �xed frequency of local search, butprovides considerable insight into the role that local search plays. Next I proposemethods that use the redundancy in the population to reduce the local search fre-quency. Finally, I propose methods that use the population's �tness information tobias the selection towards more optimal individuals.Chapter VI describes a MIMD design for GSGAs. An analysis of the al-gorithm's e�ciency is performed, which is extended to GSGAs that use local searchwith a �xed frequency. Experimental results closely match the predictions of theanalysis, and exhibit good scaling properties.Chapter VII describes the application of these methods to neural networks,a simple conformation problem and a drug docking problem.In Chapter VIII, I summarize my �ndings, discuss implications for relatedresearch with natural evolutionary systems, and point to future research directions.Appendix A describes a generalization of the biological notion of F statistics.Appendix B provides formulas for the analytic gradients of the simple conformationproblem discussed in Chapter VII.



Chapter IIBackground and Related WorkThis dissertation has been in
uenced by a number of di�erent �elds. Thegoal of this chapter is to review literature from these di�erent �elds and discuss relatedwork. I begin by providing an overview of local optimization and describe severallocal search algorithms that will be used throughout the dissertation. Next I discussthe global optimization problem and review standard methods of global optimization.This review highlights the use of local search in these methods. It also distinguishesadaptive and non-adaptive methods of global search. The GA is identi�ed withinthis context, and is described in more detail. Geographically structured GAs aredescribed and contrasted with standard, panmictic GAs. Next I describe how GAscan be hybridized with local search algorithms. Finally, I discuss previous work thatis related to the research presented in this dissertation.II.A Local SearchMethods of local search have gained attention in both theoretical computerscience and numerical optimization. An important distinction among local searchmethods concerns whether they minimize in the presence of constraints that restrictthe domain of the search [26]. This dissertation examines methods for unconstrained8



9optimization.Theoretical computer science is primarily interested in local search methodsover discrete spaces. Johnson, Papadimitriou and Yannakakis [48] observe that \Oneof the few general approaches to di�cult combinatorial optimization problems thathas met with empirical success is local (or neighborhood) search." For example, localsearch methods have proven very successful for the celebrated Traveling Salesmanproblem [47].A number of authors have performed general analyses of local search meth-ods over discrete spaces. Tovey [92, 93] models the expected performance of localsearch algorithms that optimize real valued functions de�ned on f0; 1gn. Johnson,Papadimitriou and Yannakakis [48] introduce the complexity class PLS (PolynomialLocal Search). Members of PLS are problems for which a local minimum can befound using a polynomial-time local algorithm that �nds a solution with better cost,or identi�es the current solution as a local optimum. Papadimitriou, Sch�a�er andYannankakis [71] use this class of problems to show how local search is the mainunderlying method used to solve seeming unrelated problems in computer science.The �eld of applied mathematics is primarily interested in local search meth-ods used for minimizing continuous functions on compact spaces. An importantdistinction among these methods concerns the use of derivative information like gra-dients, f 0(x), and Hessians, f 00(x); algorithms can be distinguished by the highestorder derivatives that they use. Algorithms using derivative information of ordergreater than zero are somewhat more powerful than those which only use functionevaluations (order zero derivatives). However, derivative information requires addi-tional calculations, and these algorithms do not always generated good solutions fastenough to compensate for the additional expense.Three methods of local search will be used throughout this dissertation. The�rst is the non-derivative method proposed by Solis and Wets [84]. Next, conjugategradient methods [26, 74] are used to minimize continuous functions using gradientinformation. Finally, stochastic approximation is used in pattern recognition methods



10to �nd the optimal weights for parametric models of data [19].II.A.1 Random Local SearchSolis and Wets [84] propose several random local search methods for per-forming local search on smooth functions without derivative information. Their \Al-gorithm 1" uses normally distributed steps to generate new points in the search space.A new point is generated by adding zero mean normal deviates to every dimension ofthe current point. If the value of the new point is worse than the current point, thenthis algorithm examines the point generated by taking a step in the opposite directionfrom the new point. If neither point is better than the current point, another newpoint is generated.This algorithm depends upon parameters that automatically reduce andincrease the variance of the normal deviates in response to the rate at which bettersolutions are found. If new solutions are better su�ciently often, the variance isincreased to allow the algorithm to take larger steps. If poorer solutions are frequentlygenerated, the variance is decreased to focus the search near the current solution.Unfortunately, this algorithm does not have well de�ned stopping conditions.Solis and Wets examine several attempts to de�ne stopping criteria for random searchtechniques, and conclude that \... the search for a good stopping criterion seemsdoomed to fail." In practice, this method is halted after a �xed number of iterations,or when the step size becomes smaller than a given threshold.II.A.2 Conjugate GradientSeveral classes of local search algorithms have been de�ned for algorithmsthat use gradient information. Among them, conjugate gradient methods provide ane�cient use of the gradient information while only requiring O(n) storage [74].Conjugate gradient methods are motivated by an analysis of the steepestdescent method. The steepest descent method iteratively performs line searches in
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Figure II.1: Performance of the steepest descent method on a narrow valley.the local downhill gradient direction �5f(x). A line search performs a minimizationthrough a one dimensional slice of a function, speci�ed by an initial search direction.Thus, the steepest descent method iteratively minimizes the objective function in thegradient direction.Consider the path of the steepest descent method shown in Figure II.1.When applied to functions like this that have narrow \valleys", the steepest descentmethod is ine�cient. You might expect that the �rst line minimizationwould take youto the bottom of the valley, and the second would �nish the minimization. However,the new gradient at the minimum of the �rst line search is perpendicular to the�rst gradient. Thus the new gradient does not, in general, point toward the localminimum.Conjugate gradient methods remedy this situation by using search directionsthat are conjugate to the previous search directions (the initial search direction is thedownhill gradient). The notion of conjugacy attempts to preserve the minimizationalong the previous search directions by requiring that the change along the currentgradient remain perpendicular to the previous search directions. A quadratic functioncan be expressed as f(x) = c+ bTx+ 12xTAx;where c and b are vectors and A is symmetric. For quadratic functions, using conju-



12gate search directions guarantees that subsequent line searches preserve the previousminimizations. Hence, O(n) line searches are needed [74].Because it uses gradient information, conjugate gradient has well-de�nedstopping criterion. The conjugate gradient method uses gradient information doterminate when the algorithm has reached a critical point of the objective function [26,74].II.A.3 Stochastic ApproximationIn pattern recognition problems, one is often given a set of dataf(x1; y1); : : : ; (xn; yn)g for which we would like to know the relationship between the xiand the yi. One common approach to this problem is to propose a parametric modelf(x;w) and use minimization techniques to determine parameters w that minimizeJ(w) = nXi=1E(yi; f(xi; w));where E(�; �) computes the error between the predicted y value and the actual y value,yi. A common error function is the squared errorE(a; b) = ka� bk2:Examples of parametric models are linear models [19], logit models [13] and neuralnetworks [81].Both random local search and conjugate gradient methods can be used tominimize J(w), since gradient information is typically available for this function.An alternative method of minimizing J(w) is stochastic approximation. Unlike theseother methods, stochastic approximation makes changes to the current solution basedon partial calculations of J(w). In particular, it makes updates to the current solutionusing randomly selected samples.To use information from a single sample, suppose that (xi; yi) is randomlyselected from the data set. The following learning rule is described in White [99] and



13Rumelhart, Hinton and Williams [81]:wt+1 = wt +�wt (II.1)�wt = ��t5w E(yi; f(xi; wt)); (II.2)where �t is the so called learning rate, which controls the step size of this method.Rumelhart, Hinton and Williams call this the back-propagation learning rule anddiscuss the following extension�wt = ��t5w E(yi; f(xi; wt)) + ��wt�1; (II:3)where � is the so called momentum rate, which is used to retain a \memory" ofprevious steps. White [99] summarizes analyses of stochastic approximation methodswhich show conditions under which wt converges to the optimum with probabilityone.II.B Global OptimizationMethods of global optimization di�er from methods of local optimizationin that they attempt to �nd not just any local optimum, but the smallest (largest)local optimum in the search space D. Global optimization problems are inherentlydi�cult, and few assumptions can be made about problems of practical interest. Themethods described below assume that the function is almost everywhere continuousover D. In general, methods that utilize a priori information about a problem willoutperform general purpose methods that utilize less information. However, in manypractical problems information beyond these basic assumptions will be unavailable.One important characteristic of global optimizationmethods concerns whethertheir estimate of the global optimum is guaranteed to converge to the global optimum.For a deterministic algorithm, the estimates of the global optimum, xn, converge iflimn!1 xn = x�. Natural generalizations of convergence can be de�ned for stochasticalgorithms [99]. Unfortunately, convergence is typically provided in a limit that is



14I. Methods with guaranteed accuracyA. Covering methodsII. Indirect methodsA. Methods approximating the level setsB. Methods approximating the functionIII. Direct MethodsA. Clustering methodsB. Generalized descent methodsC. Random search methodsFigure II.2: Classi�cation of global optimization methods.unattainable in practical terms. Time constraints typically preclude the ability tosearch enough to guarantee convergence to the optimum, so heuristics are often usedto generate near-optimal solutions rapidly.I now review standard methods of global optimization. Because my interestconcerns adaptive global search methods that use local search, I pay close attentionto the role of local search techniques in these global optimization algorithms. Fig-ure II.2 shows the classi�cation of global optimization methods proposed by T�orn and�Zilinskas [91] (our category labels).II.B.1 Methods with Guaranteed AccuracyThe covering methods use a global search strategy that excludes regions ofthe search space based on estimates of how much the function can vary over small re-gions. For example, quasi-Monte Carlo methods [65, 66, 67] deterministically generatea sequence of points that are uniformly spread across the search space. The accuracy



15of the estimated global optimum is computed using measures of the uniformity ofthe sequence of points. Covering methods do not usually incorporate local searchstrategies, though they could re�ne their �nal estimate by performing local searchwith the best solution found. While covering methods have provable convergenceproperties, they generally require the user to estimate properties like the Lipschitzconstant. Unfortunately, these properties can be di�cult to estimate, so the utilityof these algorithms is unclear in many practical applications [76].II.B.2 Indirect MethodsIndirect methods use local information like function evaluations to build amodel of either the function or its levels sets. This model is then used to guide theselection of new samples. Since the construction and maintenance of the model ofthe function can be quite costly, these approaches are appropriate when the objectivefunction is very expensive to evaluate. Neither of the indirect approaches mentionedabove use local search strategies. According to T�orn and �Zilinskas, these methods areespecially useful in single dimensional problems, though they have been successfullyapplied to problems with dimensionality less than or equal to 15.II.B.3 Direct MethodsThe algorithms that we examine in this dissertation can most naturally beclassi�ed as direct methods. Direct methods di�er from indirect methods in that theydo not perform expensive processing on the local information. Instead, they directlyuse the local information itself to guide the global and local search.Generalized DescentThe methods for generalized descent attempt to retain the basic functional-ity of the standard local search procedures while performing global search. Trajectorymethods modify the trajectory of the local search routine so it passes through all of



16the local optima. For example, the method proposed by Fiodorova [20] is composed ofthree subalgorithms that are used to (1) descend toward a local minimum, (2) ascendfrom a minimum up to a saddle point, and (3) pass through a saddle point. Usingthese subalgorithms, new local minima are identi�ed from searches originating frompreviously identi�ed local minima. Penalty methods modify the objective functionwith penalty terms that make the local search procedure avoid the local minima thatit has previously searched. The tunneling method described by Gomez and Levy [32]uses two phases: local minimization and tunneling. The local minimization phase�nds a local minimum x0. The tunneling phase minimizes a modi�ed objective func-tion to �nd a point x00 such that f(x00) < f(x0). The modi�ed objective function isdesigned such that a local search procedure can be used to search for x00 starting fromx0. T�orn and �Zilinskas [91] note that the implementation of generalized descent tech-niques is similar to a multistart procedure using non-local optimization techniques(see below).Clustering MethodsClustering methods are among the most e�cient algorithms proposed forglobal optimization. These methods are composed of several steps. First, they per-form Monte Carlo sampling of the search space. The samples are concentrated toobtain groups around the local minima and then clustered to give clusters identifyinglocal minima. Finally, a complete local search is applied to a sample from each clus-ter. A variety of methods can be used to perform each of these steps. Concentratingthe samples is typically performed by re�ning the samples with a few steps of localsearch and retaining a fraction of the best samples. T�orn and �Zilinskas [91] describea number of clustering algorithms that have been used with these methods, includingstandard hierarchical methods. Clustering methods are amenable to analysis becausethey use uniformly distributed samples. Rinnooy Kan and Timmer [77, 78] describea clustering method and describe conditions for which any local minima will be foundwithin a �nite number of iterations with probability one.



17One drawback of cluster methods is that they tend to perform poorly onfunctions with many local minima. For these functions, many more samples areneeded to identify the local minima. It is unclear whether the relatively poor perfor-mance on these types of functions results from inadequate stopping criteria or froma bias in the clustering methods towards larger clusters. These techniques have beensuccessfully applied to problems with as many as 40 dimensions [73].Random SearchIn T�orn and �Zilinskas, the category of random search methods is a collectionof techniques that use randomization and which do not �t nicely into any of the othercategories. I identify two subclasses of random search methods that are relevant tothis dissertation: IIIC.1 blind random search and IIIC.2 adaptive random search.Blind Random Search Blind random search methods use a global search strategythat does not use information from previous samples to guide the selection of thecurrent sample. Because these methods ignore previous samples, they may also becalled non-adaptive. The Monte Carlo and multistart algorithms are examples of thistype of algorithm. The Monte Carlo algorithm (MC) randomly samples from thesearch space according to a �xed distribution. The multistart algorithm (MS) usesMC to generate samples on which local search is performed. MS is a blind randomsearch method, because it uses MC to generate global samples.Variants of these algorithms that use a �xed, non-uniform distribution overthe search domain are also blind random search techniques. Also included is the prob-abilistic multistart algorithm (described in Chapter III) and the algorithm describedin Dorea [17] for which new samples are generated by adding a random deviate (froma �xed distribution) to the previous sample. Blind random search methods are rel-atively ine�cient, but they are often amenable to analysis [8, 18]. These methodsare limited in their use of local search because the global sampling method is notin
uenced by the performance of the local search algorithm.



18Adaptive Random Search Adaptive random search methods di�er from blindrandom search methods by using information from previous samples to guide theselection of the current sample. Examples of adaptive random search methods con-sidered in this thesis are simulated annealing and evolutionary algorithms.Simulated annealing (SA) is a method of optimization inspired by an anal-ogy between a physical annealing process for obtaining low energy states and theprocess of solving for minimal solutions to discrete optimization problems [11, 51].SA sequentially generates random deviates of the current solution that are acceptedif a probabilistic test is passed. Suppose x0 is the current solution and let x00 be thenew deviate. If f(x00)�f(x0) < 0, the new deviate is accepted. Otherwise, the deviateis accepted with probability exp(f(x00)�f(x0))=T :The value T is the \temperature" parameter that is annealed during the course ofthe optimization. Initially, the probability of acceptance is high, and eventually itbecomes small. While SA is used for global optimization, it makes no clear transitionbetween performing global and local search. At high temperatures, it will frequentlymake uphill moves, which enable it to perform a global search. As the temperaturedecreases, the search becomes increasingly localized. At very low temperatures, thesearch is often localized to a single basin of attraction for which there is a low proba-bility of escaping in the near term. For this reason, simulated re-annealing has beenproposed [44, 45]. This variant treats simulated annealing more like a local searchtechnique, using multiple starts to perform the global search.II.C Evolutionary SearchEvolutionary search algorithms, called competitive search by T�orn and�Zilinskas [91], represent an important class of adaptive search algorithms. Evolu-tionary search is an adaptive random search that maintains a collection of solutionsthat are ranked by their performance and uses a competition between these solutions



19Initialize population (with uniformly generated solutions)RepeatEvaluate solutions in the populationPerform competitive selectionApply genetic operatorsPerform local search (optional)Until convergence criteria satis�edFigure II.3: Pseudo-algorithm for a genetic algorithm.to select solutions for further processing. Research on evolutionary search algorithmsincorporates elements of both biological evolution and global optimization. Thesealgorithms are inspired by biological evolutionary mechanisms and are often used toperform global optimization.The exemplars of evolutionary search algorithms are genetic algorithms,evolutionary strategie and evolutionary programming [5, 22, 31]. The design andmotivation for these algorithms are di�erent, but they incorporate the same basicadaptive components [4, 41]. These methods use a collection of solutions (populationof individuals) that are updated iteratively using selection mechanisms and geneticoperators. The general process of each iteration (generation) is described in �gure II.3.The selection mechanism performs a competition to select a subset of thesolutions for further processing. The genetic operators are used to generate deviatesfrom the selected individuals. Two types of genetic operators are commonly employed:mutation and recombination. Mutation uses a single individual to generate a deviatethat is located in the local neighborhood of the individual. Recombination uses twoindividuals to generate another individual that is typically located in the smallesthypercube that contains them both. Local search is another genetic operator that issometimes employed with GAs to re�ne solutions in their local neighborhood.Using these genetic operators, evolutionary search algorithms perform a



20global search. Global convergence is not guaranteed for all evolutionary algorithms [79],but experiments with these algorithms indicate that they often converge to regionsof the search space that contain near-optimal solutions. Global convergence is guar-anteed for the type of GAs used in this dissertation.Local search is particularly interesting in the context of GAs because therecombination operator may prove a powerful method for adaptively generating so-lutions in new basins of attraction. Since evolutionary programming uses only themutation operator to generate new solutions, we expect that it will have greater dif-�culty generating solutions in new basins of attraction. Evolutionary strategie alsouses recombination, so it may be interesting to use local search with this algorithm.II.C.1 Genetic AlgorithmsThe GA was initially described using populations of binary strings in f0; 1gn,which are evaluated by the objective function (�tness function) [42, 31, 57]. Whensearching spaces other than f0; 1gn, the objective function decodes the binary stringand performs the function evaluation.Holland [42] proposed a selection mechanism that stochastically selects in-dividuals with probability pi = f(xi)Pi f(xi)This selection mechanism is called proportional selection, since the number of copies ofan individual will be in proportion to the its fraction of the population's total �tness.This method assumes the GA is minimizing f(x) and that the global minimum isgreater than or equal to zero, but it can be easily modi�ed to perform selection whenmaximizing a function, or when the global minimum is negative.The binary GA proposed by Holland uses mutation and crossover operators.With binary strings, the mutation operator changes a single bit on a string, and itis typically used with low frequency. The crossover operator picks two points onthe the binary representation and generates the new sample by taking all of the bitsbetween these points from one parent and the remaining bits from the other parent.



21For example, if n = 10 and the chosen points are p1 = 2 and p2 = 6:Parent(1): 1111111111 Parent(2): 0000000000 Sample: 0011110000Crossover is typically used with high frequency, so most of the individuals in eachgeneration are generated using crossover.The manner in which the parameters of the objective function are encodedon each string does not a�ect the mechanisms of the GA, though it can a�ect the GA'ssearch dynamics. In particular, much research has been done examining how crossovercomposes and disrupts patterns in binary strings, based on their contribution to thetotal �tness of the individual [30, 85, 86, 97]. This research has motivated the useof modi�ed crossover operators that restrict the distribution of crossover points. Forexample, if the binary string is decoded into a vector of integers or 
oating pointvalues, then crossover is often applied only between the integer or 
oating pointvalues on the binary string [15].II.C.2 Panmictic and Geographically Structured GeneticAlgorithmsGAs can be distinguished by the manner in which the selection mechanismand genetic operators are applied to the population. Panmictic GAs use selectionmechanisms (like proportional selection) that use global information about the entirepopulation to perform a global selection. In proportional selection the population'stotal �tness is used to perform selection. Panmictic GAs apply the crossover opera-tor to pairs of individuals randomly taken from individuals selected from the entirepopulation.Geographically structured genetic algorithms (GSGAs) perform a structuredselection in which individuals compete against a �xed subset of the population, andthe genetic operators are applied to individuals selected from these subsets. The mostcommon way of structuring the selection mechanism uses a toroidal two dimensionalgrid like the one in Figure II.4 [2, 12, 56, 87]. Every element of the population is



22
Figure II.4: The two dimensional grid used by GSGAs to de�ne population subsets.assigned to a location on the grid. The grid locations are not necessarily relatedto the individuals' solutions. They are often arbitrary designations used to performselection. Thus, there are distinct notions of locality with respect to the populationgrid and the search space (see Figure II.5). When local search is performed withGSGAs, it is performed in the search space. When local selection is performed, it isperformed in the population grid.Two general methods of local selection have been used to perform selection inGSGAs: (1) �xed size neighborhoods have been used to de�ne the set of neighboringindividuals [14, 35], and (2) random walks have been used to stochastically samplethe locations of neighboring individuals [12, 56]. Figure II.4 illustrates the �xedsize neighborhoods that could be used to perform selection. Proportional selectionis applied to the solutions in each of these neighborhoods. Since one individualis assigned to each grid location, the selection procedure is used to select only asmany individuals as are necessary to use the genetic operators. For example, twoindividuals will be selected if crossover is used. The new individual generated from agenetic operator is assigned to the grid location at which selection is performed.The early motivation for GSGAs came from SIMD designs for GAs (seeChapter VI). McInerney [56] describes a SIMD GSGA and analyzes the e�ect ofdi�erent methods of local selection. He shows how local selection encourages local
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(b)(a)Figure II.5: An illustration of the two notions of locality in GSGAs: (a) locality inthe search space, and (b) locality in the two dimensional grid used by GSGAs.regions of the 2D grid to form demes of very similar individuals, and argues that inter-deme competition enables GSGAs to perform search while maintaining diversity in thepopulation. He observes that selection using random walks gave very good results inhis experiments. He notes that this method enabled good solutions to di�use throughthe population, while strongly encouraging the formation of demes.Gordon and Whitley [35] have recently argued that the algorithmic natureof GSGAs may be of interest, independent from their implementation on a particulararchitecture. They experimentally compare GSGAs to panmictic GAs and observethat the GSGAs provide superior performance. This philosophy is echoed by Davidor,Yamada and Nakano [14] in their motivation for the ECO framework. The ECOframework provides a serial design for implementing a geographically structured GA.Finally, we note that our de�nition of GSGAs includes GAs which struc-ture the selection at a �ne granularity. A number of GAs have been proposedwhose competitive selection is intermediate between GSGAs and panmictic GAs.M�uhlenbein [63] makes a similar distinction and describes a GA which uses a setof independent subpopulations and structures the inter-population communicationwith a ladder structure. These subpopulations are typically small, so they perform alocalized search of the function. For example, Whitely [102] illustrates how a small



24population can perform a locallized search in the context of neural network opti-mization problems. Inter-population communication enables populations to combinedisparate solutions and enables them to perform a global search.II.C.3 GAs with Local SearchGA hybrids that use local search (GA-LS hybrids) are motivated by theapparent need to employ both a global and local search strategy to provide an e�ectiveglobal optimization method. The GA performs an adaptive, global sampling of thesearch domain, but it does not e�ciently re�ne solutions. GA-LS hybrids use localsearch to e�ciently re�ne solutions, and provide a clear separation between the globaland local search being performed by the algorithm.The use of local search with GAs is also inspired by biological models oflearning and evolution. We have noted that evolutionary algorithms like the GAtake many cues from mechanisms observed in natural evolution. Similarly, models oflearning are often equated with techniques for local optimization [81]. Research onthe interaction between evolution and learning has naturally led computer scientiststo consider interactions between evolutionary algorithms and local optimization [7].The following framework is used to describe the range of interactions betweenthe GA and local search algorithms. Let G be the space of genotypes, and let Phbe the space of phenotypes. Genotypes are mapped to phenotypes via a maturationfunction, � : G ! Ph. This is a restricted notion of maturation, since the phenotypeis generated only with information that is available in the genotype. Let the functionf(x) be the �tness function, f : Ph! R.Local search algorithms employ information about the �tness landscape, solocal search is performed in Ph . Iterative moves of the local search are de�ned usinga local search operator L:ph0 = �(g); ph1 = L(ph0); ph2 = L(ph1); :::; phn = L(phn�1)Local search operators may exploit any information about the �tness function (e.g.,



25derivatives of f) to estimate a solution with a better �tness value.This di�erentiates them from mutation operators, M, which depend onlyon information contained in g; in particular, they are independent of informationabout either the phenotypic representation or other individuals in the population.Note that \mutation" is sometimes used to refer to any and all genotypic modi�ca-tions. We reserve the term \mutation" for completely random, \blind" modi�cations.Speci�cally, this notion of mutation does not include modi�cations like crossover thatexploit information (e.g., population gene frequencies) to select the changes made tothe genotype.
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26g with the result ��1(phn). The name is an allusion to Jean Batiste de Lamarck'scontention that (some) phenotypic characteristics acquired during a lifetime can be-come heritable traits. In our model, acquired characteristics correspond to phenotypicmodi�cations due to the local search operator, and heritability corresponds to the re-placement of genome g with ��1(phn). If ��1(x) does not exist, then Lamarckian localsearch is not possible since the \reverse transcription" of genetic material cannot beperformed. In this case, only non-Lamarckian local search can be performed. Non-Lamarckian local search exploits information gained via phenotypic search withoutusing it to directly modify the genome. Non-Lamarckian local search is typicallyused to determine the �tness associated with g.II.D Related WorkGAs have been combined with local search methods for a number of di�erentapplications. The problem of �nding the optimal parameters for a neural network [7,50, 68] comes closest to the models of learning and evolution. GA-LS hybrids havebeen applied to combinatorial graph problems like the traveling salesman problem [9,63, 95] and the graph partitioning problem [96]. These problems lend themselves tothe use of local search operators because there are a number of very good heuristicsfor the local improvement of a solution. Other applications include the mappingproblem [64] and molecular conformation problems [49]. M�uhlenbein [60, 61, 62],Ackley [1], and McInerney [56] have developed application-independent versions of theGA for optimization with local search. In most of these applications, the performanceof the GA is substantially improved when the local search technique is employed.There are a number of common elements to the use of local search in theseapplications. First, most authors apply the local search to each individual in everygeneration. A notable exception is work by M�uhlenbein et al. [62] who only performlocal search if the GA is either not increasing fast enough or if the GA is converging toa solution. Second, most authors apply the local search operator until a local minima



27was found. Some authors did stop their local search after a �xed time limit or aftera �xed number of iterations of their local search algorithm.Finally, most authors used Lamarckian local search techniques. Belew etal. [7] and Judson et al. [49] make a clear distinction between mutation and localsearch in their experiments, and were able to compare the performance of Lamar-ckian and non-Lamarckian local search. They found that Lamarckian local searchoutperforms non-Lamarckian local search. Judson et al. also found that this perfor-mance di�erence increased as the dimensionality of their problem increased.In all of these results, the algorithmic design of the GA was not signi�cantlymodi�ed to accommodate the local search operator. Some authors did develop parallelalgorithms that were more e�cient, but they did not introduce any mechanisms thattreated local search di�erently. The one change that most of the authors acknowledgedwas the use of unusually small population sizes. Few of the experiments performedby the authors used population sizes over 50 and many of them were less than 25.This choice appears to have been made because of computational constraints. In fact,several of the authors noted that their performance improved as the population sizewas increased.



Chapter IIILocal Search with NonadaptiveGlobal SearchThis chapter presents a theoretical analysis of a simple global optimizationalgorithm that has been modi�ed to selectively apply local search. The algorithm,called probabilistic multistart, is a variant of multistart local search. Instead of ap-plying local search to every randomly generated point, probabilistic multistart applieslocal search with a �xed probability. This is not a powerful method of selecting sam-ples, since it does not use any information about previously selected samples. But fora given function, the optimal probability of local search is not immediately obvious.My analysis shows that for any function, the optimal probability of localsearch is always either zero or one. Note that Monte Carlo corresponds to a probabilityof zero, while multistart corresponds to a probability of one. Thus, probabilisticsmultistart is never more e�cient than both Monte Carlo sampling or multistart localsearch. My analysis describes how characteristics of the function, along with theerror threshold used for optimization interact to determine whether Monte Carlo ormultistart is most e�cient.
28



29III.A De�nitionsI analyze the computational complexity of the following algorithms:Monte Carlo sampling (MC) the algorithm that takes n samples from the searchspace from a �xed distribution.multistart (MS) the algorithm that takes n samples from the search space from a�xed distribution and applies a complete local search to each of these points.probabilistic multistart (�-MS) the algorithm that takes n samples from thesearch space from a �xed distribution and applies a complete local search fromeach of these points with probability �.These algorithms can be described by a process that iteratively generates a randompoint and then applies an operator L(x) to the point to generate a �nal solutionpoint. For MC, the operator is the identity. For MS, the operator is a local searchalgorithm. For �-MS, the operator is a combination of the two that applies a localsearch algorithm with probability �. Let the operator for �-MS be L�(x). Note thatthe operator for MC is L0(x) and the operator for MS is L1(x).Let Y = fy1; : : : ; yng be the set of initial random points used by thesealgorithms. To compare these algorithms, I assume that they use the same �xeddistribution. Without loss of generality, let this be the uniform distribution oversome domain D. Let X� � D be the set of global optima and let f� = f(x�),x� 2 X�. Let x̂n be the estimate of the global optimum after n samples:x̂n = arg miny2Y f(L(y))and f̂n = f(x̂n). Suppose f has N local minima with domains of attraction Di suchthat D = [Ni=1Di.1 Let x�i = arg minx2Di f(x)1This assumes that saddle points are arbitrarily assigned to one of the basins of attraction.



30and f�i = f(x�i ). Finally, let � be a measure on the Borel sets of Rn. Typically�(A) is simply the n-dimensional volume of the set A, more generally � is a Lebesguemeasure.III.B Complexity AnalysisIn computational analysis, the fundamental tradeo� is between computa-tional expense and the performance measure for the problem at hand. In the follow-ing analysis, I equate computational expense with the amount of time an algorithmuses. The following complexity analysis considers algorithms that use randomizationinformation [94]. The analysis examines the complexity for the worst possible setof randomization information, except that a � probability of �nding a solution withaccuracy greater than � is given.This complexity analysis concerns the time complexity of the algorithms,and the space complexity of the algorithms is ignored. For this analysis, I assumethat every function evaluation incurs a �xed time cost �. Section IV.C.3 discusses themethods used to evaluate the performance of practical global optimization methods.III.C Monte Carlo vs. MultistartI begin by comparing the computational complexities of MC and MS. Fig-ure III.1 illustrates the principal de�nitions that are used throughout this analysis.The x�i are the local optima of this function, and � is the accuracy at which theoptimization is to be performed. A1(�) and A2(�) measure the amount of each lo-cal minimum which contains solutions that are �-accuracy (represented by the grayshaded region with the bar underneath). B1(�) and B2(�) measure the size of eachlocal minimum (represented by the bars connected by dashes to the curve). The pro-portions of these values to the size of the entire search space are the quantities usedin this analysis.
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Figure III.1: Illustration of de�nitions of Ai(�) and Bi(�).Formally, let Ai(�) = fx 2 Di j Err(x) � �g� = Xi �(Ai(�))�(D)and let Bi(�) = fDi j Err(x�i ) � �g� = Xi �(Bi(�))�(D)� is the fraction of points in the domain D that are �-close, while � is the fractionof points in D that are in basins of attraction that contain points that are � close.Clearly, � � �.III.C.1 Monte Carlo ComplexityGiven n samples, the probability that the solution is �-close isP (Err(x̂n) � �) = 1� (1 � �)n:



32If we have a � probability of error, then1 � � = 1 � (1 � �)n� = (1 � �)nn = log(�)log(1 � �)Since each sample requires a single function evaluation, the complexity of MC is� log(�)log(1 � �) :III.C.2 Multistart ComplexityGiven n samples, the probability that the solution is �-close isP (Err(x̂n) � �) = 1 � (1 � �)nIf we have a � probability of error, then1� � = 1� (1� �)n� = (1� �)nn = log(�)log(1� �)Each sample requires the application of the local search method. If Tls is the expectedcost of local searches started in D �B(�), then the expected complexity isTls log(�)log(1� �):Interesting local search methods require the evaluation of points in the search space,so it is reasonable to assume that Tls > �.III.C.3 ComparisonWe can evaluate the relative performance of MC and MS by comparing theircomplexity for given � and �. This gives us a feeling for the trade-o� between globalsearch and local search by de�ning the conditions for which each of these algorithms



33is more e�cient. It is better to use MS when its complexity is less than that of MC.This is true when � log(�)log(1� �) > Tls log(�)log(1� �)log(1� �)log(1� �) > Tls�which is equivalent to having 1� � < (1� �)Tls=�To understand this inequality, note that0 � 1� � � 1� � � 1:As Tls=� increases, (1 � �)Tls=� approaches zero exponentially fast. Therefore, theinequality will be true if 1 � � is near one and Tls=� is not too big.III.D Probabilistic MultistartIII.D.1 ComplexityWe now consider the complexity of �-MS, for whichP (Err(x̂n) � �) = 1� zn;where z = �(1 � �) + (1 � �)(1 � �). If we have a � probability of error, thenn = log(�)log(z)The expected cost for a sample of size n isnXi=0 (iTls + (n� i)�)0B@ ni 1CA �i(1� �)n�i = n�Tls + (n� n�)�= n(�Tls + (1� �)�)Therefore, the complexity islog(�)log(z)(�Tls + (1 � �)�) (III:1)



34III.D.2 ComparisonI now demonstrate that �-MS is never more e�cient than the best of MCand MS. Let g(�) be the complexity in Equation III.1 parameterized by �.If �-MS is more e�cient than both MC and MS, then since g(�) is boundedit assumes its minimal value at �� 2 h0; 1i. Since g(�) is di�erentiable on h0; 1i,g0(��) = 0. Further, g00(��) � 0 since g(��) is minimal. To show that �-MS is notmore e�cient than both MC and MS, it su�ces to show that 8� 2 h0; 1i these twoconditions do not hold.Theorem 1 If Tls > �, � > � and � < 1, then 8�� 2 h0; 1i s.t. g0(��) = 0,g00(��) < 0.Proof:Recall that the cost function isg(�) = log(�)log(z) (�Tls + �� ��) ;which has derivativesg0(�) = log(�)z log2(z) (z(Tls � �) log(z)� (�Tls + �� ��)(� � �))g00(�) = log(�)(�� �)z2 log3(z) �(�2(�� �)(�Tls + �� ��) + [(�� �)(�Tls + �� ��) + 2z(Tls � �)] log(z)) :If g0(�) = 0, then log(z) = (Tls + �� ��)(� � �)z(Tls � �) :Substituting into the expression for g00(�), we getg00(�) = log(�)(�� �)2(�Tls + �� ��)z2 log3(z)  �2 + (� � �)(�Tls + �� ��) + 2z(Tls � �)z(Tls � �) !g00(�) = log(�)(�� �)3(�Tls + �� ��)2z3 log3(z)(Tls � �)Since � < �, (� � �)3 < 0. � < 1 implies that log(�) < 0. Thus the numeratoris positive. The denominator is negative since 1 > z > 0, log(z) < 0 and Tls > �.Therefore, g00(�) < 0.



35Corollary 1 If Tls > � > 0, then 6 9� 2 h0; 1i s.t. g(�) < g(0) and g(�) < g(1).Proof:If � < 1 and � > �, then the previous argument uses Theorem 1 to provethe result. If � = 1 then g(�) � 0, so 6 9� 2 h0; 1i s.t. g(�) < g(0) = g(1). If� = �, then g(�) = log(�) (�Tls + �� ��) = log(�). This is a linear function of � thatis minimized at � = 0. Thus, 6 9� 2 h0; 1i s.t. g(�) < g(0), so the result is proved.I noted earlier that it is reasonable to assume that Tls > � since interestinglocal search methods require function evaluations. With this assumption, �-MS isnever more e�cient than both MC and MS.III.E SummaryIn summary, I have described conditions for deciding whether MC or MS aremore e�cient and have proved that that �-MC is never more e�cient than the bestof either of these methods. Note that the comparison between MC and MS implicitlydepends upon the �-accuracy level required. For large � values, it is likely that a largefraction of the points will be �-accurate and MC will be most e�cient. However, when� is small (as is often the case), MS will be most e�cient so long as the local searchmethod is not too expensive.The negative results for �-MC indicate that selective local search does notnecessarily improve performance. This result is particularly strong, since it applies forany given function. It is not clear from our analysis whether this result will generalizeto methods of selective local search which use additional information like the valueof the objective function or results from previous local searches. This additionalinformation will certainly prove useful in biasing the selection of local searches, butit is unclear whether it will improve the e�ciency of optimization.



Chapter IVTest Problems and MethodsThis chapter motivates the global optimization problems used to experimen-tally analyze the performance of GA-LS hybrids. First, an analysis of the complexityof the optimization problem for the GA is presented. These results emphasize thedi�culty of the global optimization problem for an arbitrary function. I conclude thatan analysis of GA-hybrids must pay attention to the relationship between the algo-rithmic parameters of the GA and the function space from which the �tness functionis selected.Next, I motivate the use of test functions whose domain is inRn and describethe three test functions used in the experiments. Finally, I motivate the use of GAswith a 
oating point representation and describe the genetic operators used with the
oating point GA.IV.A Worst-Case AnalysisThere have been many attempts to analyze the computational behavior ofthe GA, with Holland's schema theorem [42] central to much of this analysis. Usingit, we can justify how and why certain bit patterns (schemata) will be propagatedfrom one generation to the next. This can be used to analyze the e�ectiveness ofdi�erent genetic operators (see for example Syswerda [89]). Related analysis with36



37Walsh functions has also proven very rewarding. Walsh functions can be used toanalyze the e�ectiveness of genetic operators, as well as analyze the di�culty of thefunction being optimized [31, 30].While these analyses provide some understanding of how GAs perform theirsearch, they have not been able to identify the class of functions that GAs e�cientlyoptimize. Any discussion of the computational complexity of the GA must be relativeto a speci�c class of functions. The assumptions that can be made about the class offunctions are often critical to establishing interesting complexity bounds.To illustrate the importance of selecting an appropriate class of functions, Isummarize the analysis in Hart and Belew [36] that considers the GA's computationalcomplexity for a very broad class of functions. I assume that the reader is familiarwith formal language theory and follow the notational conventions of Hopcroft andUllman [43]. Recall that P refers to the class of formal languages that can be rec-ognized by a deterministic Turing machine (TM) in polynomial time. Additionally,both NP and RP refer to the classes of formal languages that can be recognized bynondeterministic TMs in polynomial time. The distinction between the two is thatfor languages in NP there must exist at least one path of computation (sequence ofmachine states) that leads to an acceptance of the language, whereas for languages inRP at least half of all computation paths must lead to accepting states. It is knownthat P � NP , RP � NP and P \ RP 6= �, and it is widely believed that the twoinclusions are proper.1 An algorithm is e�cient if it completes its computation inpolynomial time. In other words, a TM M is e�cient if the language it accepts is inP .IV.A.1 Complexity AnalysisConsider F, the class of all deterministic pseudo-boolean functions f suchthat f : Bl ! Z, where B = f0; 1g. We can formalize the problem that the GA1The reader is referred to Gary and Johnson [24] for an excellent discussion of the complexitydi�erences between P and NP , and to Gill [25] for an exposition of probabilistic computation.



38attempts to solve as a combinatorial optimization problem DGA-MAX (following theformat of Papadimitriou and Steiglitz [72]):De�nition 1 DGA-MAX The Genetic Algorithm combinatorial maximization prob-lem that (1) uses a deterministic �tness function f and (2) assigns the �tness of themaximally �t individual in a population to the �tness of the population itself. Aninstance of DGA-MAX consists of the following two parts:1) an integer l de�ning the combinatorial space Bl2) an encoding of a TM Mf , which de�nes a function f : Bl ! ZIn order to determine the complexity of DGA-MAX, we need to de�ne aversion of this problem as a formal language (using the format of Gary and John-son [24]).De�nition 2 DGA-MAX INSTANCE: a string encoding integers l, and �, and a TMMf that computes a function f : Bl ! Z in polynomial time.QUESTION: Does there exist an x 2 Bl s.t. f(x) > �?The optimization version of DGA-MAX is more powerful than the formal languageversion of DGA-MAX. Given a TM that solves the optimization version, we canclearly solve the formal language version. However, it is unknown whether the oppo-site is true (see Papadimitriou and Steiglitz [72] for further details). Thus, the opti-mization version is at least as di�cult as the formal language version of DGA-MAX.Hart and Belew prove the following.Proposition 1 DGA-MAX is NP-complete.If P 6= NP , as is widely suspected, this result implies that there does notexist an e�cient TM that recognizes DGA-MAX.Corollary 2 The optimization version of DGA-MAX is NP-hard.This result indicates that there probably does not exist an e�cient algorithmto solve the optimization version of DGA-MAX. However, this result only applies to



39deterministic algorithms. Since the GA is nondeterministic, it could be the case thatits nondeterminism allows it to e�ciently solve either of the versions of DGA-MAX.For example, it is known that there are languages that can be solved more e�cientlyby probabilistic TMs than by deterministic TMs [25]. The following corollary demon-strates that even though GAs are stochastic, they still require super-polynomial timeto solve DGA-MAX unless RP = NP .Corollary 3 If RP 6= NP , then DGA-MAX is not in RP.IV.A.2 Performance GuaranteesThese results demonstrated that it is highly unlikely that there exists ane�cient algorithm that solves DGA-MAX, whether it be deterministic or nondeter-ministic. Given this, we consider what other performance guarantees can or cannotbe made for DGA-MAX. It is often the case that you can guarantee performancebounds, even for problems that are NP-complete.Consider the optimization version of DGA-MAX. Let Opt(I) refer to thevalue of the optimal value for instance I, and let A(I) refer to the value that algo-rithm A returns for instance I (we assume that A is an e�cient algorithm). We areconsidering a maximization problem, so Opt(I) � A(I) for all algorithms A, and weassume that A(I) � 0 for all algorithms and for all instances.There are a number of performance guarantees de�ned in the literature. Weconsider the the absolute and asymptotic performance ratios to analyze the di�cultyof DGA-MAX. We take the following de�nitions from Gary and Johnson [24]. Letthe ratio RA(I) = Opt(I)=A(I). We de�ne� Absolute Performance Ratio RA:RA = inffr � 1 j RA(I) � r;8I 2 DGA-MAXg� Asymptotic Performance Ratio R1A :R1A = inffr � 1 j 9N 2 Z>0 s.t. 8I 2 DGA-MAX; Opt(I) � N;RA(I) � rg



40� Best Achievable Asymptotic Performance Ratio RMIN(DGA-MAX):RMIN(DGA-MAX) = inffr � 1 j there exists a polynomial time algorithmA for DGA-MAX with R1A = rgR1A indicates whether we can determine a bound on RA(I) above some value N , whileRA indicates whether we can determine a bound on RA(I) for values above N = 0.RMIN(DGA-MAX) is the smallest value of R1A over all possible algorithms A. It isthis last performance ratio that we analyze. Hart and Belew prove the following:Proposition 2 If P 6= NP , then RMIN(DGA-MAX) =1.This result implies that no deterministic algorithm can provide a perfor-mance guarantee on RA(I) s.t. RA(I) is less than some �xed r. This is true even ifwe consider only instances that have optima above �xed thresholds. This is a weakperformance guarantee, and given this result we can easily demonstrate that otherstronger performance results are not possible.Corollary 4 If P 6= NP , then no polynomial time algorithm A can guarantee thatOpt(I)�A(I) � �; 8Ifor a constant � 2 R�0.Since these proofs are for deterministic algorithms, they are not directlyapplicable to the GA. The following related proofs show similar results for nondeter-ministic algorithms.Proposition 3 If RP 6= NP , then RMIN(DGA-MAX) =1.Corollary 5 If RP 6= NP , then no probabilistic polynomial time algorithm A canguarantee that Opt(I)�A(I) � �; 8Ifor a constant � 2 R�0.



41IV.B Test ProblemsThe key to the complexity results in the previous section is the fact that theclass of functions is very broad. Thus, it is very di�cult to e�ciently optimize anarbitrary function from this class. The conclusion I draw from these results is thatan analysis of the GA must be made relative to a class of functions that representsimportant practical problems. As was noted earlier, this element is missing fromcurrent computational analyses of the GA.Some experimental analyses have examined the performance of GAs onclasses of functions that are motivated by an analysis of the role of the crossover oper-ator. Forrest and Mitchell [23] and Mitchell, Holland and Forrest [58] have examinedthe performance of the GA on a subclass of Walsh polynomials. These analyses haveyet to make de�nite predictions of the performance of GAs, but have provided muchinsight into the way the genetic operators perform search.The functions used in these analyses of the GA have domains in f0; 1gn. Inmy experimental analysis, I perform optimization on continuous functions de�ned onRn. I claim that it is easier to analyze experimental results when optimizing thesefunctions, particularly when optimizing with local search methods. In discrete spaces,the neighborhood structure used to search the domain space can have a tremendousin
uence on the performance of local optimization methods. For example, Wein-berger [98] provides a formalism for computing something like the Fourier analysis,but over discrete spaces. Analyses like this indicate how discrete problems vary acrosstheir domains. Unfortunately, the results of this analysis appear very speci�c to thetopological structure of the discrete space. Thus, results on one topology may bedi�cult to generalize to problems that have other topologies.Optimizing functions de�ned on Rn also enables us to make comparisonswith algorithms developed in the global optimization literature. Most problems inthe testbeds used to evaluate GAs and global optimization algorithms are de�ned onRn [1, 21, 31, 91]. Thus, I evaluate GA-LS hybrids on problems for which we can



42directly compare my results to other global optimization and evolutionary methods.The experiments in Chapter V and VI perform optimization on three globaloptimization test functions on Rn. These problems are essentially unconstrained. Anessentially unconstrained function over a domain D has the following properties: (a)the global optimum is contained in D, and (b) all local minima of f outside of D aregreater than the local minima in D.The global optimization methods described in Chapter II only assume thatthe function is almost everywhere continuous. However, these test problems aredi�erentiable everywhere. Our experiments will examine the impact of this additionalinformation for methods that use local search methods that use gradient information.IV.B.1 GriewankThe Griewank functionf(x) = nXi=1 x2i=4000 + 1� nYi=1 cos(xi=pi)with dimension n = 10 is one of the most di�cult global optimization test func-tions [91]. Figure IV.1 shows a one-dimensional slice of this function, which has beensmoothed a bit to remove some of the local minima. The Griewank function containssome 500 local minima in [�600:0; 600:0]10, which are concentrated around the globaloptimum at the origin.IV.B.2 Modi�ed GriewankA modi�ed Griewank functionf�(x) = � nXi=1 x2i =4000 + 1� nYi=1 cos(xi=pi)varies the weight of the quadratic term in the Griewank function. This function isa bumpy quadratic when � is one and is a product of cosines when � is zero. Thisparticular class of functions is interesting because it varies the distance between the
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Figure IV.1: The Griewank function.values of the local minima in the function; as � approaches zero, the values of thelocal minima become similar.I consider this problem in 10 dimensions. For all �, the minimum value ofthe function is zero. I optimize this function over the domain [�600:0; 600:0]10, anduse � = 0:1. Figure IV.2 shows a one-dimensional slice of this function.IV.B.3 RastriginThe Rastrigin functionf(x) = x21 + x22 � cos(18x1)� cos(18x2)was proposed in Rastrigin [75]. M�uhlenbein, Schomisch and Born [61] describe amodi�ed version of this functionf(x) = 10n + nXi=1 �x2i � 10 cos(2�xi)� ;which generalizes Rastrigin's function to an arbitrary number of dimensions. Fol-lowing M�uhlenbein, Schomisch and Born, I optimize this function in 20 dimensions,over the domain [�5:12; 5:12]20. The local minima of this function are approximatelylocated on the integer coordinates, and the global minimum is at the origin.
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Figure IV.3: The Rastrigin function.



45IV.C Optimization MethodsIV.C.1 Floating Point GAI use a GA with a 
oating point encoding in the experiments. GAs have tra-ditionally used binary encodings of real numbers to perform optimization on Rn [16].While binary encodings have been used to successfully solve optimization problems,special manipulation of this encoding is often necessary to increase the e�ciency ofthe algorithm [83, 100]. There is evidence that optimization on Rn can and shouldbe performed with real parameters. Goldberg [27] provides formal arguments that
oating point GAs manipulate virtual alphabets, a type of schema that is appropriatein Rn. Wright [103] and Janikow and Michalewicz [46] suggests that 
oating pointGAs can be more e�cient, provide increase precision, and allow for genetic operatorsthat are more appropriate for a continuous domain.In the experiments, the panmictic GAs use proportional selection, while theGSGAs use local proportional selection with minimal NEWS neighborhoods. The�tness values are linearly scaled using the average of the worst individual in the last10 generations. Solutions are scaled between zero and one. Solutions with valuesbelow the average are scaled to zero. This type of scaling attempts to make theproportional selection less sensitive to the range of the objective function.The 
oating point GA uses a two-point crossover that swaps the 
oatingpoint values between two individuals. This is analogous to the two-point binarycrossover when crossover points are only allowed between the sets of bits that encodethe real numbers. A crossover rate of 0.8 was used in the experiments.IV.C.2 Floating-Point MutationI have considered several types of mutation operators for the 
oating pointGA. Normal mutation adds a normal deviate to one dimensions of an individual.A random variable Y has a normal distribution denoted by N(�; �) if its density



46Rastrigin Griewank Modi�edGriewankNormal 2.25 23.13 3.55Cauchy 204.48 0.19 0.48Interval 15.16 2.02 1.02Table IV.1: Comparison of 
oating point mutation operators.function is fY (y) = 1p2��2 exp�(y��)2=(2�2)The Cauchy mutation operator adds a Cauchy deviate to one dimension of an indi-vidual. A random variable X has a Cauchy distribution denoted by C(�; �) if itsdensity function isfX(x) = �� f�2 + (x� �)2g � � 0; � > 0;�1 < x <1The interval mutation operator replaces one dimension of an individual with a valueuniformly selected over the domain of that dimension.Table IV.1 shows the performance of GAs using these mutation operatorson the three test functions. The results are the best solutions found after 150,000function evaluations, averaged over 50 trials. The di�erences between the mutationoperators are signi�cantly di�erent.2The Cauchy mutation operator seems a good compromise between the localdeviates of the normal mutation operator and the global deviates of the intervalmutation operator. The normal mutation operator has a small chance of generatingdeviates far away, while the interval operator has a small chance of generating nearbysolutions. While Cauchy mutation is biased towards small deviates, its distributionhas thick tails, which enables it generate very large deviates.2The statistical analyses performed in this dissertation are multiple statistical comparisons be-tween several samples of repeated measurements. In this instance, there are three samples thathave 50 measurements each. Multiple comparisons are performed with the GH procedure, whichcompares samples with unequal variances [90]. This method tests multiple null hypotheses whichstate that the means of each pair of samples are identical. The con�dence of this test applies to all ofthe hypothesis tests considered collectively. The statistical comparisons reported in this dissertationhave a con�dence of (p < 0:05).



47I believe that normal mutation performs better on the Rastrigin functionbecause of the di�erence in the size of the search domain between the Rastriginfunction and the other two functions. The domain of the Rastrigin function is 10.24wide in every dimension, while the domain of the Griewank and modi�ed Griewankfunctions are 1200 wide. The width of the search domain can impact the frequencywith which the mutation operators generate solutions that are outside the initialsearch domain (which I call external solutions), thereby impacting the ability of theGA to focus its search for the global optimum.On the Griewank and modi�ed Griewank functions, it is unlikely for themutation operators to generate external solutions, especially as the search focuses nearthe origin. On the Rastrigin function, it is not unlikely for the mutation operators togenerate external solutions. Comparing the normal and Cauchy mutation operatorson this function, it is more likely for Cauchy mutation to generate external solutionssince it has a higher probability of generating large deviates. Consequently, the GAusing normal mutation is more e�cient at minimizing the Rastrigin function.This suggests that the \width" of the mutation operators be tailored to thesize of the search domain. However, such an analysis is beyond the scope of thisdissertation. Since I am primarily interested in GA-LS hybrids, the experiments useCauchy deviates to search the domain with global samples. I use C(0; 1) Cauchydeviates with the 
oating point GA. Unless otherwise speci�ed, the mutation rate isdetermined by operationalizing the analysis in Scha�er et al. [82] that examines the in-teraction between population size, mutation rate and the length of the genome. Whenoptimizing in Rn with a population of size P , the mutation rate used is qe=n=P .IV.C.3 Performance ComparisonsThe performance of GA-LS hybrids is compared to Monte Carlo sampling(MC) and multistart local search (MS). In the experiments, the n samples were uni-formly selected. The following abbreviations are used for MS and GA-LS hybrids:



48MS-SW - Multistart Solis-WetsMS-CG - Multistart conjugate gradientGA-SW - Genetic algorithm with Solis-WetsGA-CG - Genetic algorithm with conjugate gradientPrevious results suggest that Lamarckian local search is superior to non-Lamarckianlocal search, so the experiments use Lamarckian local search.Three di�erent approaches are commonly used to compare the performanceof global optimization algorithms. The �rst is the number of function evaluationsneeded to �nd an �-accurate solution. The second is the time needed to �nd an �-accurate solution. To account for variations in processing speed between computers,the CPU time is normalized by the time needed to evaluate Shekel's function 1000times [91]. Shekel's function is a standard global optimization test function. Thethird approach is to compare the performance of the methods after a �xed number offunction evaluations. This is particular useful if complete optimization is prohibitivelyexpensive.This last approach is used in the experiments. The performance measureused to compare optimization algortihms is the value of the best solution found after150,000 function evaluations. In preliminary experiments, the relative performanceof these methods could usually be distinguished after this many function evaluations.Extra bookkeeping was performed in the GAs to reduce the number of re-dundant function evaluations. If an individual generated by crossover is identical toone of its parents, or if an individual is selected but not modi�ed by mutation, thenthe �tness for that individual is not re-evaluated.When conjugate gradient is used in MS and GA, the gradient evaluationis equated with a single function evaluation. In general, gradient evaluations canbe more expensive than function evaluations, but for the test functions the gradientevaluation is well approximated by the cost of the function evaluation. The Rastriginfunction's gradient and function evaluations both require O(n) multiplications, ad-ditions and calls to trigonometric functions. The Griewank and modi�ed Griewankfunctions' gradient and function evaluations both require O(n) additions and calls to



49trigonometric functions. However, the gradient evaluations require O(n2) multiplica-tions, while the function evaluations require O(n) multiplications. This factor shouldnot substantially bias my results since the dimensionality of these two functions isnot large.



Chapter VSelective Local SearchV.A IntroductionIn standard GA-LS hybrids, a complete local search is performed on everyindividual in the GA's population. While this type of GA-LS hybrid has proven moree�cient than the GA on a variety of problems, I propose that a more selective use oflocal search will improve the e�ciency of GA-LS hybrids. This chapter evaluates thee�ciency of several GA-LS hybrids that selectively apply local search.To motivate this work, consider the three graphs in Figure V.1. These graphsrepresent possible distributions of local minima in an objective function. Figure V.1ais a function for which local search will probably not improve the GA's e�ciency. Lo-cal search would help re�ne solutions to the local minima, but the GA's competitiveselection should be able to distinguish between points in the two minima since theyhave distinct ranges. Figure V.1c represents the opposite extreme, where the rangesof the two minima almost overlap completely. I expect that GA-LS hybrids whichapply local search frequently will be most e�cient on this function, since the �tness ofsolutions randomly selected from either local minima will not provide reliable infor-mation about which local minima contains the global optimum. Finally, Figure V.1brepresents an intermediate function for which GA-LS hybrids may be most e�cientwith a moderate amount of local search. 50
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Figure V.1: Three distributions of local minima.
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Figure V.2: Two thresholds for the Griewank function.Recall from Chapter III that the �-accuracy will a�ect the relative perfor-mance of optimization methods. For example, consider Figure V.2 that shows two� thresholds which could be used for the Griewank function. If the �1 threshold isrequired, then the objective function is a bumpy quadratic function that has few localminima. However, if the �2 threshold is used, then the optimization is working witha function with many local minima, all of which have similar local values. This isan important observation because GA-LS hybrids that selectively apply local searchmay be relatively more e�cient at di�erent accuracy levels. The method that bestlocates the global optimum may be less e�cient than other methods when a largeraccuracy level is required.



52In this chapter, I propose several methods that selectively apply local search.I �rst describe a non-adaptive method of selecting points with a �xed frequency. Thisis a simple method, but it provides considerable insight into the role that local searchplays in GA-LS hybrids. Next I consider two classes of adaptive methods of selectinglocal search. Distribution-based adaptive methods use redundancy in the populationto avoid performing unnecessary local searches. Fitness-based adaptive methods usethe �tness information in the population to bias the local search towards individualsthat have better �tness.The experiments with these methods address the �rst two issues describedin Chapter I: (I) how often should local search be used and (II) on which solutionsshould local search be applied? The experiments with �xed frequency local searchaddress issue I, while the experiments with the adaptive methods address issue II. Thefactors that a�ect the remaining two issues are addressed as part of these experiments.The interaction between local search length and local search frequency is examined,which addresses issue III. The experiments also compare selective methods for GA-LS hybrids using random local search and conjugate gradient local search. Sinceconjugate gradient is typically more e�cient than random local search, this addressesissue IV.V.B Nonadaptive SelectionThis section examines the performance of GA-LS hybrids that apply localsearch with a �xed frequency. This type of GA-LS hybrid treats local search like anyother genetic operator, and is perhaps the simplest method of selectively applyinglocal search. Much of the previous research with GA-LS hybrids can be viewed asusing local search with frequency 1.0.I expect that reducing the local search frequency will be advantageous whenthe GA can e�ectively eliminate regions of the search space in which the globaloptimum is clearly not located. Reducing the local search frequency lowers the chance



53of performing unnecessary local searches in these regions. On the other hand, highlocal search frequencies will be needed when the GA has a di�cult time focusing ona single best region and re�nement of the samples generated by the genetic operatorsis needed.I begin by examining experiments that vary the local search frequency inthe GA-LS hybrids. An analysis of these experiments con�rms my expectations, andprovides insight into the role that local search plays in the GA-LS hybrids. Next, Iexamine the impact of adding elitism to the GA, and see how it a�ects the optimallocal search frequency. Finally, I examine experiments that vary the population sizeand local search length.V.B.1 Fixed Frequency Local SearchTo measure the e�ect of the frequency of local search, I examine the perfor-mance of GA-LS hybrids that use local search with frequencies 0.0625, 0.25 and 1.0.Experiments were performed with the three test functions. Solis-Wets and conjugategradient were both run for 50 function evaluations. Populations of size 50 were used.Each experiment was averaged over 20 trials. The optimization algorithms were rununtil a solution was found whose value was less than 10�16 or until 150000 functionevaluations were performed. A calculation of the gradient was counted as a singlefunction evaluation (see Section IV.C.3).Results Figures V.3, V.4 and V.5 summarize the results of these experiments.1 These�gures plot the average value of the best solution after a given number of function eval-uations. Figures V.3a, V.4a and V.5a compare the performance of MC, MS-CG andthe three GA-CG hybrids with di�erent frequencies of local search. Figures V.3b, V.4band V.5b compare the performance of MC, MS-SW and the three GA-SW hybridswith di�erent frequencies of local search.1The results reported here are an extension of those reported in Hart and Belew [37].
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(b)Figure V.3: Log-performance on the Griewank function using (a) conjugate gradientand (b) Solis-Wets.
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(b)Figure V.4: Log-performance on the modi�ed Griewank function using (a) conjugategradient and (b) Solis-Wets.
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(b)Figure V.5: Performance on the Rastrigin function using (a) conjugate gradient and(b) Solis-Wets.



57No single method has the best average performance after 150,000 functionevaluations in all six experiments. The GA-LS hybrids using local search with fre-quency 1.0 have the best average performance for three of the six experiments (seeFigures V.3a, V.4a and V.5b). The GA has the best performance when comparedwith methods using Solis-Wets on the modi�ed Griewank function (see Figure V.4a).In the remaining two experiments, no single method is clearly better.The performance of MC is relatively poor on all of these functions, thoughit is better than MS-SW on the Griewank and modi�ed Griewank functions. Theperformance of MS-CG is quite good for these problems. It is consistently betterthan the GA, and it is initially better than the GA-CG hybrids on the modi�edGriewank function.DiscussionAs a group, the relative performance of the GA-LS hybrids was roughly thesame for both test functions. Since the objective function has a value of zero at theglobal minimum of the test functions, we can equate the value of a solution foundwith the �-accuracy of the solution. An inspection of the results indicates that theGAs which used local search infrequently were more e�cient at solving for solutionswith relatively large �-accuracy. The GAs that used local search with frequency 1.0were more e�cient at solving for solutions with small �-accuracy, and appear to bebest suited for solving for the global optima of these problems. This pattern is mostapparent in the performance of the GA-SW hybrids, for which low frequency GA-SW hybrids are relatively more e�cient for are wider range of �-accuracies (e.g. seeFigure V.4b).These observations about the relative performance of the GA-LS hybridsprovide insight into the way local search is used by the GA. In particular, they in-dicate that the performance of a GA-LS hybrid is a�ected by the degree to whichthe population's �tnesses accurately re
ect domain-wide characteristics of the func-tion. The experimental results indicate that the GA-LS hybrids using local search



58infrequently are more e�cient at �nding solutions with relatively large �-accuracy.This can be attributed to the fact that the GA's initial populations are quite diverse,so the population's �tnesses accurately re
ect the domain-wide characteristics of theobjective function. Thus, the competitive selection can reliably identify regions thatare likely to contain optimal solutions, and applying local search infrequently avoidsnumerous local searches on individuals located in bad regions of the search domain.The experimental results also indicate that GA-LS hybrids using local searchfrequently are more e�cient at �nding solutions with small �-accuracy. This can beattributed to the fact that the GA's populations typically lose diversity after severalgenerations, and new individuals generated by the genetic operators become focusedon some particular subset of the search space. In this case, the population's �tnessesdo not re
ect the domain-wide characteristics of the objective function. Consequently,the competitive selection cannot reliably identify regions that are likely to containoptimal solutions. Re�ning individuals with local search can improve the e�ciencyof the GA-LS hybrid in two ways. First, the local searches may generate bettersolutions more e�ciently than the GA's competitive selection. Second, the �tnessesof the re�ned solutions may re
ect the domain-wide characteristics of the objectivefunction more accurately, especially when complete local searches are performed.Note that the population diversity is not the only factor that a�ects thedegree to which a population's �tnesses re
ect the domain-wide characteristics of theobjective function. As I noted in Section V.A, the overlap in ranges among the localminima of the function a�ects the degree to which �tness information can be used todiscriminate between local minima. This factor certainly a�ects the reliability of thecompetitive selection, thereby a�ecting the optimal local search frequency. Considerthe general class of modi�ed Griewank functions that are parametrized by �. TheGriewank function is de�ned by � = 1:0, and the modi�ed Griewank function usedin these experiments is de�ned by � = 0:1. Frequent local searches will be moree�cient sooner when � is small, because as � becomes smaller a larger portion ofthe search space contains local minima that have values which are very similar to



59the values of the neighboring local minima. A careful inspection of our experimentalresults with the Griewank and modi�ed Griewank functions con�rms this prediction.Extended simulations with the GA-SW hybrids con�rmed this prediction when com-paring the performance of GA-SW hybrids with frequencies 0.0625 and 0.25, but notwhen comparing GA-SW hybrids with frequencies 0.0625 and 1.0.V.B.2 ElitismThe focus of the previous analysis of GA-LS hybrids concerns the relation-ship between the GA's competitive selection and the frequency of local search. Thisanalysis indicates that the optimal local search frequency is related to the ability ofthe GA's competitive selection to reliably identify good solutions. As this becomesmore di�cult, frequent local searches improve the e�ciency of the GA-LS hybrid.Elitist mechanisms play a similar role in GAs, since they are used to providean a priori bias on the relative value of solutions in the population. Elitist mechanismsidentify the best individual(s) in a population and insure that they exist in the nextgeneration. Therefore, these mechanisms induce a strong bias based on the rank ofindividuals in the population.It is natural to ask how elitism a�ects the optimal local search frequency. Iexpect that introducing elitism will reduce the optimal local search frequency to theextent that the bias induced by the elitist mechanisms aids in the GA's competitivesearch. If GAs using elitist mechanisms are more e�cient than standard GAs, thenGA-LS hybrids using local search infrequently may be most e�cient. In fact, theremay be a substantial reduction in the optimal local search frequency since elitistmechanisms are relatively cheap when compared with local search.The experiments from the previous section were repeated using an elitistmechanism which preserves the single best individual in the GA's population. Ta-ble V.1 shows the �nal results for the three test functions after 150,000 functionevaluations. A statistical analysis of these results indicates that the elitist GA andGA-LS hybrids are signi�cantly better than non-elitist GA and GA-LS hybrids on



60Optimization Rastrigin Griewank Modi�ed GriewankMethod Normal Elitist Normal Elitist Normal ElitistGA 166.3 3.6 0.26 0.07 0.56 0.06GA-SW 0.0625 102.9 18.4 0.22 0.11 1.68 0.93GA-SW 0.25 86.8 37.9 0.09 0.04 1.57 1.02GA-SW 1.0 75.3 50.0 0.13 0.08 1.15 1.15GA-CG 0.0625 103.8 24.2 0.02 8:6 � 10�4 0.06 1:6 � 10�3GA-CG 0.25 117.8 40.8 1:2 � 10�9 1:3 � 10�19 0.01 1:6 � 10�20GA-CG 1.0 108.1 59.0 1.2 �10�19 1:1 � 10�19 3:2 � 10�8 1:4 � 10�20Table V.1: Average performance of GAs and GA-LS hybrids with and without elitism.the Rastrigin function. On the Griewank and modi�ed Griewank functions, the onlysigni�cant di�erences were between the elitist and non-elitist GAs.These results con�rm our expectations. For all three functions, elitism im-proves the performance for the GA and GA-LS hybrids. The Rastrigin and modi�edGriewank functions exhibit marked improvement when elitism is introduced, and thebest local search frequency shifts from 1.0 to 0.0625. On these functions, the elitistGAs are more e�cient than the GA-SW hybrids that we tested, and the elitist GAis better the GA-CG hybrids on the Rastrigin function. It is possible that a GA-LShybrid with frequency less than 0.0625 is more e�cient than the elitist GAs, but theseresults suggest that elitism may provide a su�cient bias to preclude the need for localsearch on these two functions.This last observation is particularly interesting, though not completely un-expected. The discussion of Figure V.1a in Section V.A indicates that there may besome functions for which local search does not improve the e�ciency of the GA. Inthe absence of prior information about the function, these results recommend the useof elitism in the GA-LS hybrids. Further implications of these results are discussedat the end of this chapter.



61V.B.3 Population Size and Local Search LengthPopulation size and local search length are two more factors which can a�ectthe e�ciency of GA-LS hybrids. The population size a�ects the number of samplesthat the competitive selection uses to generate new individuals. This factor a�ects thedegree to which the population's �tnesses re
ect the domain-wide characteristics ofthe objective function; more samples enable the population to better re
ect featuresof the objective function. Consequently, we expect that GA-LS hybrids using localsearch infrequently will be more e�cient when using larger populations. The e�ectof the local search length on GA-LS hybrids is less clear. Longer local searches re�neeach solution more, but it is unclear how the degree of re�nement a�ects the e�ciencyof a GA-LS hybrid.The previous experiments have compare the performance of GA-LS hybridsusing populations of size 50 and local searches of 50 function evaluations. These aresmall populations for the GA, and local searches with this many function evaluationsdo not often completely minimize solutions. To measure the impact of population sizeand local search length, the experiments in Section V.B.1 were extended to includepopulations of size 200 and local search frequencies of length 200. The experimentswere not performed for GA-CG hybrids. They performed exceptionally well in theprevious experiments, so it would be di�cult to interpret results of these new exper-iments. Tables V.2, V.3 and V.4 summarize the results of these experiments.The �nal performance is better with larger populations for the Rastriginand modi�ed Griewank functions. As expected, GA-LS hybrids with infrequent localsearch are more e�cient when using large populations. However, larger populationsappear to be more sensitive to the appropriate selection of the local search frequency(e.g. see Table V.3).The e�ect of local search length is not particularly clear. For the Griewankand modi�ed Griewank functions the best results use short local searches, but for theRastrigin function long local searches are better.In the results reported in Tables V.2, V.3 and V.4, the total computation



62LS Len LS Freq Pop Size50 2000.0625 102.86 62.8550 0.25 86.82 63.881.0 75.28 76.440.0625 67.72 49.85200 0.25 76.31 55.491.0 58.66 58.84Table V.2: E�ects of local search length and population size on GA-SW hybridsoptimizing the Rastrigin function.LS Len LS Freq Pop Size50 2000.0625 0.226 0.12850 0.25 0.092 1.2731.0 0.128 10.0970.0625 0.165 0.728200 0.25 0.145 2.6891.0 0.370 9.439Table V.3: E�ects of local search length and population size on GA-SW hybridsoptimizing the Griewank function.LS Len LS Freq Pop Size50 2000.0625 1.684 0.46950 0.25 1.568 0.7831.0 1.572 2.4570.0625 2.275 0.695200 0.25 2.052 2.0171.0 3.885 5.051Table V.4: E�ects of local search length and population size on GA-SW hybridsoptimizing the Modi�ed Griewank function.



63LS Len LS Freq Pop Size Rastrigin Griewank Modi�edGriewank200 0.25 200 55.49 2.689 2.017200 1.0 50 58.66 0.370 3.88550 1.0 200 76.44 10.097 2.457Table V.5: GA-SW hybrids that have a �xed computation of 10,000 function evalu-ations per iteration.of each iteration of the GA-LS hybrid may vary with the length of local search andpopulation size. Table V.5 summarizes the combinations of local search length, pop-ulation size and local search frequency for which the GA-LS hybrids perform thesame computation in each iteration (10,000 function evaluations in this case). In theRastrigin and modi�ed Griewank functions, infrequent local search appears to be themost in
uential factor.V.C Adaptive SelectionV.C.1 Distribution-base AdaptationMethods of distribution-based adaptation modify the local search frequencybased on the distribution of individuals in the population. These methods aim toreduce the number of local searches used in each generation when there are redundantsolutions in the population. I describe methods based on two notions of redundancy.First, I consider redundancy due to duplicate solutions in the population. Thesemethods avoid performing multiple local searches on the same solution by reducingan solution's local search frequency in proportion to the number of duplicate solutionsin the population.Next, I describe how distance metrics can be used to generalize this notionof redundancy. The goal of this generalization is to avoid performing multiple localsearches on solutions that are within the same basin of attraction. Since it is di�cult



64to identify whether two solutions are in the same basin of attraction, this gener-alization reduces the local search frequency in proportion to the number of similarsolutions in the population.Redundancy from Duplicate SolutionsWhen duplicate solutions exist in a population, it is possible (and perhapslikely) that multiple local searches will be started from the same solution several times.To avoid performing these redundant local searches, we can modify the local searchprobability for each individual in the following manner. Consider the i-th individualwhich has solution xi, and let Ni be the number of solutions in the population whichhave the solution xi. Given the speci�ed local search frequency �, the modi�ed localsearch frequency for the i-th individual is �=Ni. The values Ni can be calculated withO(N2) pairwise comparisons of the population's individuals. Using this method,the expected number of local searches performed on each distinct solution in thepopulation is one. I call this the complete method for calculating redundancy.The complete method of calculating redundancy can be expensive for prac-tical problems which have large populations and high dimensionality. I propose twoapproximations to this approach that use information from the crossover operations.Recall that in sexual genetics, all new individuals are the result of mating, so we focuson these events. When crossover is performed, we can determine whether the parentsof the new individual are duplicates. This is actually information about whether theredundancy in the previous population, but we can use it to estimate the redundancyof the individual in the current population.Let �(x; y) be the Kronecker function; �(x; y) is one if x equals y, and is zerootherwise. If the parents of the i-th individual are p1 and p2, then we can modify thelocal search frequency of the i-th individual as follows�1 + �(N � 1)�(p1; p2)where � 2 [0; 1]. This method approximates the complete method of calculatingredundancy by assuming that �(N � 1) other solutions have the same di�erence



65as the parents of the current individual. I call this the local approximation to thecomplete method of calculating redundancy, since it modi�es each individual's localsearch frequency independently.The global approximation to the complete method calculates the number ofindividuals generated by duplicate parents, and makes a global modi�cation to thelocal search frequency. If there are N 0 duplicate pairs of parents during crossover,then the modi�ed local search frequency is�1 �N 0=NThe modi�ed local search frequency used with the global approximation results inlower search frequency for both the redundant and nonredundant individuals.Since the crossover operator can only tell us if two particular solutions areidentical, it cannot be used to identify the subsets of redundant solutions. Hencethe two approximation methods cannot guarantee that local search will be applied toonly one solution from every subset of redundant solutions.Redundancy from distance metricsThe notion of redundancy in the previous section relies on statistics of thenumber of individuals that are identical. I now describe a generalization of thismethod that uses a distance metric over the space of genotypes, and demonstratethat the previous method is a special case. The motivation for this new method isthat in addition to avoiding multiple local searches on the same solution, we wouldalso like to avoid performing multiple local searches on solutions that are within thesame basin of attraction of a local minima. Since it is di�cult to identify whethertwo solutions are in the same basin of attraction, we reduce the local search frequencybased on the degree to which solutions in the population are similar.This generalization is inspired by the biological notion of inbreeding, whichuses a measure called the F statistic to quantify the self-similarity of diploid indi-viduals in a population. Appendix A formalizes the similarity measure used in the



66biological de�nition of the F statistic and generalizes the F statistic for similaritymeasures on an arbitrary space.To use the generalized F statistic, we select a distance metric for the spaceof solutions and calculate the following ratioFIT = HT � d(X;Y )HTwhere HT is the expected distance between solutions uniformly distributed in thespace of solutions, and d(X;Y ) is the distance between two solutions X and Y .This ratio is used to adapt the local search frequency in a manner similar to themethods described in the previous section. To measure the complete redundancywith F statistics, the i-th individual calculatesFi = 1N NXj=1 HT � d(Xi;Xj)HTFor an arbitrary metric, FIT is bounded above by one, and is bounded below byHT �maxij d(Xi;Xj), which may be negative. Thus Fi may be negative. With thisin mind, the modi�ed local search frequency for the complete method is8><>: �=(NFi) Fi 2 [1=N; 1]� otherwiseThe local and global approximate methods are similarly de�ned. If F 0 isthe F statistic of the parents of the i-th individual, then the modi�ed local searchfrequency for the local approximate method is8><>: �=(1 + �(N � 1)F 0) F 0 2 [0; 1]� otherwisewhere � 2 [0; 1]. If F 00 is the sum of the F statistics of the parents used to performcrossover, then the modi�ed local search frequency for the global approximate methodis 8><>: �=(1 � F 00=N) F 00 2 [0; 1]� otherwise



67Since the GA focuses its sampling in subsets of the search domain, it is pos-sible for the ratio FIT to be high, even though the population contains few redundantsolutions. To account for this e�ect, we can update the value of HT based on theextents of the solutions in the current population. This modi�cation increases theamount of local search performed at each iteration, enabling local search to be usedat every stage of the search.Finally, I make two observations. First, redundancy due to duplicate solu-tions can be captured in this framework usingd(X;Y ) = (X 6= Y ) (V:1)With this distance metric, HT = 1 and the value of FIT is 1� d(X;Y ) = (X == Y ).Thus Fi measures the average number of individuals that are identical to the i-thindividual.Second, note that the complete method is closely related to the the methodof �tness sharing proposed by Goldberg and Richardson [29]. Fitness sharing is amethod of inducing niche behavior in GAs that enables the GA to converge to apopulation that is distributed over several local optima. This method modi�es the�tness measure of every individual in the population based on the distance betweeneach individual with the rest of the population. The modi�ed �tness measure usedwith �tness sharing is fs(xj) = f(xj)Pni=1 s(d(xi; xj))where d(x; y) is a distance metric ands(x) = 8><>: �share�x�share �share � x0 elseIf �share = HT , then the normalized FIT is s(d(x; y)). Thus the denominator of themodi�ed �tness function can be seen as the sum of normalized F statistics betweenthe individual and the rest of the population. This is very similar to the calculationperformed when using the complete method to calculate redundancy with F statistics!



68V.C.2 Fitness-based AdaptationMethods of �tness-based adaptation modify the local search frequency ofan individual based on the relationship of its �tness to the �tnesses of the rest ofthe population. The goal of these methods is to use �tness information to bias theselection of solutions. These methods assume that individuals with better �tness aremore likely to be in the basins of attraction of good local optima.Using �tness information, we would like to determine modi�ed local searchfrequencies pi > 0 such that �pi � 1 and Pi pi = N . This last restriction is notnecessary for �tness information to be used. However, I will follow this restriction,since it will allow me to make direct comparisons with the experiments using �xedfrequency local search.The value pi can be calculated using any of a number of selection strategiesthat have been proposed for the GA [28]. For example, we can use an elitist methodwhich always performs local search on the individual with the best �tness. To insurethat Pi pi = N , the frequency of the remaining individuals are reduced. If N� < 1,then the frequency of the remaining individuals is zero. Let k = arg mini f(xi). Themodi�ed local search frequency ispk = 8><>: N� N� � 11 otherwise (V.2)pi = 8><>: 0 N� � 1(N� � 1)=(N � 1) otherwise i 6= k (V.3)V.C.3 ResultsGA-LS hybrids using these mechanisms for adaptively selecting local searchwere evaluated by optimizing the three test functions. The experiments were runwith the same setup as the experiments in Section V.B.1, except that populationsof size 200 were used. In preliminary experiments with populations of size 50, thesemethods induced little or no change in the performance of the GA-LS hybrids.



69The local and global approximation distribution-based methods were runusing three di�erent con�gurations: (1) using the inequality distance metric de�nedin Equation V.1, (2) using the squared L2 norm de�ned in Appendix A, and (3)using the squared L2 norm, with adaptively modi�ed HT values. The local approxi-mation method was run with � = 1:0, which makes the assumption that the rest ofthe population is as inbred as the two parents. The complete method was run forthe inequality distance metric, but the other two con�gurations proved prohibitivelyexpensive so results for these experiments are not available.The results for the distribution-based methods are summarized in Tables V.6,V.7 and V.8. I omit results for GA-CG hybrids on the Griewank and modi�edGriewank functions. GA-CG hybrids performed exceptionally well on these func-tions without the adaptive selective methods, so it would be di�cult to interpretthese results.A statistical analysis of the results for GA-SW hybrids on the Rastriginfunction (Table V.6a) shows that there are few signi�cant di�erences between thesemethods, and no signi�cant improvements over the �xed frequency methods. A statis-tical analysis of the results for GA-CG hybrids on the Rastrigin function (Table V.6b)found signi�cant di�erences between the the methods using the L2 norm and themethods using the inequality metric or �xed frequency local search. GA-CG hybridsusing non-adaptive HT are signi�cantly better when using low frequencies of localsearch, while GA-CG hybrids using adaptive HT are signi�cantly better for almostall frequencies of local search.A statistical analysis of the GA-SW hybrids on the Griewank function (Ta-ble V.7) found a number of signi�cant di�erences. Of particular interest is that theGA-LS hybrids using the inequality methods and �xed frequency local search withfrequencies 0.25 and 1.0 are signi�cantly worse than the other methods. This is incontrast to the fact that these methods have the best results when used with lowfrequency. An analysis of the results for the modi�ed Griewank function (Table V.8)also found these signi�cant di�erences, but the methods using the L2 norm without



70Method LS Freq Baseline Inequality Squared L2 Adaptive SquaredMetric Metric L2 MetricFixed 0.0625 62.84Freq 0.25 63.881.0 76.440.0625 65.43 NA NAComplete 0.25 66.79 NA NA1.0 72.47 NA NALocal 0.0625 55.37 87.15 84.84Approx 0.25 64.05 72.46 74.271.0 71.43 68.34 66.04Global 0.0625 59.27 65.74 75.54Approx 0.25 66.36 59.69 72.941.0 71.71 65.21 67.02(a)Method LS Freq Baseline Inequality Squared L2 Adaptive SquaredMetric Metric L2 MetricFixed 0.0625 89.28Freq 0.25 106.791.0 106.180.0625 94.41 NA NAComplete 0.25 108.63 NA NA1.0 105.50 NA NALocal 0.0625 91.84 58.98 60.61Approx 0.25 106.25 65.84 64.331.0 105.80 96.28 58.37Global 0.0625 92.50 68.01 64.29Approx 0.25 111.31 108.56 67.031.0 104.39 101.48 73.15(b)Table V.6: Results for the Rastrigin function using (a) GA-SW hybrids and (b) GA-CG hybrids.



71Method LS Freq Baseline Inequality Squared L2 Adaptive SquaredMetric Metric L2 MetricFixed 0.0625 0.128Freq 0.25 1.2731.0 10.100.0625 0.144 NA NAComplete 0.25 1.373 NA NA1.0 8.593 NA NALocal 0.0625 0.138 0.482 0.466Approx 0.25 1.322 0.447 0.2741.0 8.817 0.377 0.148Global 0.0625 0.131 0.570 0.207Approx 0.25 1.262 0.476 0.1571.0 9.362 0.652 2.217Table V.7: Results for the Griewank function using GA-SW hybrids.Method LS Freq Baseline Inequality Squared L2 Adaptive SquaredMetric Metric L2 MetricFixed 0.0625 0.469Freq 0.25 0.7831.0 2.4570.0625 0.631 NA NAComplete 0.25 0.854 NA NA1.0 2.482 NA NALocal 0.0625 0.534 0.378 0.504Approx 0.25 0.882 0.535 0.5941.0 2.371 0.659 0.557Global 0.0625 0.530 0.399 0.562Approx 0.25 0.836 0.500 0.4801.0 2.523 0.584 0.932Table V.8: Results for GA-SW hybrids on the modi�ed Griewank function.



72adaptive HT gave the best results.These statistical analyses indicate that GA-LS hybrids using the L2 metriccan be signi�cantly more e�cient than the GA-LS hybrids using either the inequalitymetric or �xed frequency local search. Figures V.6, V.7 and V.8 compare the �xedfrequency local search with the local approximation method using the inequality met-ric and the L2 metric with non-adaptive and adaptive HT on the Griewank function.Figure V.6 shows that the inequality metric has virtually no e�ect on the performanceof the GA-LS hybrid. Inspection of the simulations con�rmed that this method madevery small modi�cations to the local search frequency. Figure V.7 shows that the L2norm with non-adaptive HT does much better than the �xed frequency method ini-tially, but it gets stuck and subsequently gets beaten by the �xed frequency methods.Inspection of these simulations revealed that the local search frequency is reducedto a point where very few local searches are performed, which may contribute to itspoor �nal performance. Finally, Figure V.8 shows that the L2 norm with adaptiveHT also does better initially, and with high frequency remains competitive with thebest �xed frequency method. Adapting HT maintains a higher level of local search,while allowing the local approximation method to select individuals for local search.These observations are true for the results of the modi�ed Griewank function,but the results GA-LS hybrids on the Rastrigin function are less clear. The resultsfor GA-LS hybrids using the global approximation are similar, though the the globalapproximation methods do not reduce the local search frequency as much as thelocal approximation methods. In part, this is due to the use of � = 1:0 with thelocal approximation methods, which reduces the local search frequency as much aspossible. Recall that the local selection in GSGAs encourages the formation of demesof very similar individuals. Consequently, I expect to �nd more redundancy in thepopulations of GSGAs. To see whether this improves the performance of GA-LS hy-brids, the previous results using the inequality metric are replicated for serial GSGAs.The results of these experiments are summarized in Table V.9, along with a compar-
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Figure V.6: Comparison of (A) �xed frequency local search and (B) the local approx-imation method using the inequality metric on the Griewank function.
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Figure V.7: Comparison of (A) �xed frequency local search and (C) the local approx-imation method using the L2 norm with non-adaptive HT on the Griewank function.
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Figure V.8: Comparison of (A) �xed frequency local search and (D) the local approx-imation method using the L2 norm with adaptive HT on the Griewank function.ison to GA-LS hybrids with �xed frequency local search. For the Rastrigin function,a statistical analysis of these results shows signi�cant di�erences between the �xedfrequency and complete methods, and the local and global approximate methods. Nostatistical di�erences are noted for the Griewank and modi�ed Griewank functions.Finally, I examined the performance of the elitist �tness-based selection oflocal search. Table V.10 summarizes the results of these experiments. A statisticalcomparison revealed no statistical di�erences between these these results and theresults for the �xed frequency GA-LS hybrids. A comparison of these results revealsthat the results for the Griewank and Modi�ed Griewank functions are virtuallyidentical with both methods. The results for the Rastrigin function appear slightlybetter with the elitist selection method. This matches the earlier observation thatelitism improves the performance of the GA on the Rastrigin function more than theother functions.



75Method LS Freq Rastrigin Griewank Modi�edGriewankFixed 0.0625 8.65 0.11 0.458Freq 0.25 23.94 0.72 0.6611.0 61.96 7.40 2.4040.0625 8.46 0.134 0.397Complete 0.25 22.25 0.676 0.53951.0 65.04 7.323 2.538Local 0.0625 6.65 0.131 0.326Approx 0.25 16.75 0.342 0.4461.0 52.62 5.735 1.983Global 0.0625 5.16 0.140 0.442Approx 0.25 15.03 0.302 0.5091.0 57.01 5.878 1.851Table V.9: Results using GSGAs, comparing �xed frequency local search with meth-ods using the inequality metric.
LS Freq Rastrigin Griewank Modi�edGriewank0.0625 56.58 0.12 0.5370.25 65.50 1.41 0.8631.0 75.94 10.06 2.532Table V.10: Results for elitist �tness-based selection of local search.



76V.C.4 DiscussionThe statistical analyses of these results does not identify a clearly superiormethod of selecting local search, but the methods using the distance metric withadaptive HT can be recommended. These methods provided excellent performanceon the test functions. Using this type of similarity information is less sensitive to thee�ects of the local search frequency than the methods using the inequality metric andthe elitist method of �tness-based selection. When the distance metric is used withoutadaptation, it seems to converge prematurely, so adapting HT seems preferable.When statistical di�erences are noted, the complete method of adapting thelocal search frequency is often signi�cantly worse than the local and global approx-imate methods. This is unexpected since the complete method preserves the mostinformation about the true state of the population. I believe this happens becausethe approximate methods tend to lower the local search frequency in the population.This observation suggests that GA-LS hybrids using local search frequencies lowerthat 0.0625 will be more e�cient when using large populations.One factor which is not explicit in the presentation of these results is thatthe methods using the L2 distance metric are computationally more expensive thanthe methods using the inequality metric. This di�erence is due to the fact that the L2metric is more expensive to compute than the inequality metric. This factor makes abig di�erence in the methods which measure the complete redundancy, since O(N2)calls to the distance metric are made every generation. While the results in thischapter have used function evaluations to determine relative time complexities, thisobservation emphasizes the need to perform time comparisons for methods which mayinvolve substantial overhead.This factor also makes the GSGAs using the L2 metric relatively expensive.Since GSGAs have redundant populations, each iteration of the GSGA eventuallyrequires a relatively small number of function evaluations. When this occurs, a con-siderable fraction of the cost of each of each iteration will be spent performing com-petitive selection and measuring the redundancy of solutions in the population. The



77cost of the distance calculations is su�ciently expensive to make the GSGAs usingthe L2 metric much more expensive than the GSGAs using the inequality metric.V.D Summary and DiscussionI have proposed methods of selectively applying local search which applylocal search with a �xed frequency, which use information about the redundancy inthe population to reduce the frequency of local search, and which apply an a prioribias to the selection of individuals for local search. When compared with the standardapplication of local search to every individual in the population, these methods cano�er signi�cant improvements in the e�ciency of the search.The analysis of the results for �xed frequency local search provides a sim-ple model of the interaction between local search and the GA's competitive selectionwhich can be used to design e�cient GA-LS hybrids. For example, this model indi-cates that GAs with large populations will be more e�cient when using infrequentlocal searches. This prediction is con�rmed by the experiments in Section V.B.3.These experiments are not comprehensive enough to suggest an optimal balance be-tween population size and local search frequency, but the GA-LS hybrids using largepopulations with infrequent local search were almost always more e�cient than theother combinations. This is an important departure from previous research with GA-LS hybrids, which have typically used GAs with small populations and applied localsearch to every member of the population.The model also indicates that GAs that employ biases like elitism will bemost e�cient with infrequent local search. In fact, the results with the Rastriginfunction indicate that elitism may make the competitive selection so powerful thatlocal search is not needed. Since these experiments use a relatively weak form of bias,this raises the question of the utility of local search for more sophisticated GAs thatuse competitive selection mechanisms which take greater advantage of this type ofbias. It is possible that local search may not improve these GAs when applied with



78the non-adaptive, �xed frequency method. However, we do not expect this to betrue for adaptive methods, particularly the �tness-based adaptive methods. Thesemethods employ a bias that should complement these more sophisticated GAs andthereby improve their e�ciency.From these results, it is unclear whether the length of the local searches havea substantial impact on the GA-LS hybrids. However, these experiments con�rm thatGA-LS hybrids were usually more e�cient when more e�cient local search methodswere employed.While an analysis of these results does not identify a clearly superior methodof adaptively selecting local search, I have argued that the methods using the distancemetric with adaptive HT (i.e. expected distance between solutions in the population)can be recommended. Both the local and global approximation techniques workwell with this method. As I have noted above, �tness-based methods are promising,especially in the context of GA-LS hybrids that use more sophisticated GAs.In all of the methods proposed in this chapter, the initial local search fre-quency is a parameter that is unspeci�ed. Other factors of the GA like populationsize and elitist methods may provide a bias for selecting low local search frequency.However, when using adaptive methods of selecting local search points, the best localsearch frequency is unclear. In part, this is due to the fact that the �-accuracy desiredappears to a�ect the optimal local search frequency. One way to handle this di�cultyis to select methods which are relatively insensitive to the local search frequency. Theresults for the adaptive methods indicate that the methods using the L2 metric havethis property.Finally, we note that our analysis of GA-LS hybrids may explain the perfor-mance that other researchers have observed in their GA-LS hybrids. Davis [59] andM�uhlenbein [61] have observed that local search is not needed in the initial stages ofthe optimization. Our analysis suggests that local search is probably useful for theirproblems, but is best used with a low frequency.



Chapter VIParallel GeographicallyStructured Genetic AlgorithmsVI.A IntroductionParallel genetic algorithms can be roughly classi�ed according to the type ofhardware on which the GA is implemented. Island-model genetic algorithms (IMGAs)have been developed for architectures like the nCUBE2 and Intel i860 that exhibitcoarse-grained parallelism. These architectures typically have a small number of fairlypowerful processors that are loosely coupled. These parallel GAs have been also calledcoarse-grained GAs. The label \island-model" relates these parallel GAs to modelsin population genetics that describe the migration of individuals between isolatedsubpopulations.Geographically structured genetic algorithms (GSGAs) have been developedfor architectures like the CM2 and DAP that exhibit �ne-grained parallelism. Thesearchitectures typically have on the order of 210 or more simple processors, and areoften described as massively parallel. These parallel GAs have also been called mas-sively parallel GAs and �ne grain GAs. Whitley [101] has identi�ed a subset of theseparallel GAs, cellular GAs, which can be equated with �nite cellular automaton. Thelabel \geographically structured" refers to the fact that interactions between individ-79



80uals are structured according to their location on a �xed grid, and bears resemblanceto the notion of geographic structure in population genetics.Another distinction typically seen between the IMGAs and GSGAs concernsthe presence or absence of a global synchronization. Massively parallel architecturesoften use SIMD (Single Instruction Multiple Data) parallelism, which provides globalsynchronization by executing the same instruction on all of the processors simul-taneously. Coarse-grained architectures typically execute instructions in a MIMD(Multiple Instruction Multiple Data) fashion, which does not require (or enforce)global synchronization between the processors.The algorithms used by IMGAs and GSGAs are clearly distinct from thealgorithm employed by the classic GA. The classic GA uses a single population ofindividuals that are panmictically recombined. IMGAs are typically implementedby independently running a classic GA on each processor, with individuals migratedbetween the subpopulations (see M�uhlenbein [63]). GSGAs are implemented by as-signing one individual per processor. Selection and recombination is limited to a smallnumber of individuals on neighboring processors, typically forming a two dimensionalgrid of individuals (see Spiessens and Manderick [87], Collins and Je�erson [12] andMcInerney [56]).Gordon and Whitley [35] have recently argued that the algorithmic natureof these parallel algorithms may be of interest, independent from their implemen-tation on a particular architecture. They experimentally compare the performanceof several classic, island-model and geographically structured GAs that are executedon a sequential architecture. They observed that both IMGAs and GSGAs provideperformance that is superior to the performance of a classic GA. This philosophy isechoed by Davidor, Yamada and Nakano [14] in their motivation for the ECO frame-work. The ECO framework provides a serial design for implementing a geographicallystructured GA.I am interested in the algorithmic nature of the GSGA, but wish to paral-lelize it on MIMD architectures. This particular parallel design is motivated by two



81observations. First, the utilization of a SIMD architecture can be severely reduced if(a) expensive genetic operators are applied to a subset of the population or (b) thecost of the genetic operators is highly variable. In addition, the utilization can bereduced if the genetic operators cannot be synchronized. GSGA-LS hybrids providean example of both of these cases. GSGA-LS hybrids apply a local search methodto individuals in the search space, which searches in a neighborhood of the objectivefunction. The length of a local search may vary depending on the initial point, andlocal search algorithms like conjugate gradient involve many steps that are not easilysynchronized. A MIMD design for a GSGA would not be subject to these penalties,so it would better utilize the parallel architecture.The second observation concerns the cost of a MIMD design for GSGAs.Several authors have observed that when GSGAs are used, the population formsgeographic clusters, or demes, containing very similar solutions. Since selection andrecombination is performed locally, this implies that a large number of individuals willperform recombination with very similar solutions. In fact, individuals in these demeshave a higher probability of performing recombination with an identical solution. If weare optimizing a deterministic �tness function, we can avoid evaluating an individualwhen this occurs. This can lead to a substantial reduction in the number of functionevaluations required by the algorithm. As a result, larger populations can be usedthan we might have otherwise be expected.The outline of this chapter is as follows. Section VI.B describes how tomap a GSGA onto a collection of processors, and discusses the communication thatneeds to occur between the processors. Section VI.C analyzes the complexity ofthe the parallel GSGAs under the assumption that the variability caused by geneticoperators can be ignored. Section VI.D extends this analysis to consider the e�ectof expensive genetic operators like local search. Section VI.E describes the methodsused to experimentally con�rm our analysis. Section VI.F presents the experimentalresults, which are discussed in Section VI.G.



82VI.B A MIMD GSGA DesignMy parallel GSGAs use a toroidal, two-dimensional Nx by Ny grid thatis partitioned onto p processors to distribute the computation. Two methods ofdecomposing the population grid immediately suggest themselves. First, the gridcan be partitioned into strips by dividing either the x- or y-dimensions into p parts.Alternatively, the grid can be partitioned into blocks. If r evenly divides Nx and sevenly divides Ny, we can partition the grid onto p = rs processors. Figure VI.1illustrates these two methods of decomposition. The relative complexities of thesedecomposition methods will be considered later.
(a) (b)Figure VI.1: Two types of partition methods: (a) strip partitions and (b) box parti-tions. To distribute the GSGAs computation, we need to examine the type ofcommunication required between the processors. Communication is required to (1)check for termination signals and (2) perform selection and recombination. Eachprocessor may terminate independently by achieving a speci�ed �tness level or byexceeding a speci�ed number of function evaluations. Communication is required toterminate all of the processors when any of them satisify the termination conditions.Performing selection and recombination at a given location on the grid re-quires access to the �tness and genotypes of neighboring individuals that may be



83located on other processors. Two methods have been used to perform selection andrecombination in GSGAs: (1) �xed size neighborhoods have been used to de�ne theset of neighboring individuals, and (2) random walks have been used to stochasticallysample the locations of neighboring individuals. My parallel GSGA uses �xed sizeneighborhoods, so the size of the border areas that need to be communicated betweenprocessors can be determined. Figure VI.2 illustrates several �xed-size neighborhoodsthat could be used with a GSGA. Figure VI.2a and VI.2b are called NEWS neigh-borhoods, because they only use neighbors to the North, East, West and South.
(a) (b) (c) (d)Figure VI.2: Fixed-size neighborhood structures.Figure VI.3 illustrates the type of border areas needed for the strip and boxdecomposition methods. Each shaded region represents a border region of individualsthat are located on a neighboring processor. Strip decomposition requires two borderregions that need to be updated. The number of border regions for the box decompo-sition method can depend on the neighborhood structure. If a NEWS neighborhoodis used with box decomposition, then only the four lightly shaded border areas inFigure VI.3b need to be updated by neighboring processors. If other neighborhoodsare used, then the four darkly shaded border areas also need to be updated.GSGAs can be distinguished by the manner in which interprocess commu-nication is coordinated. Serial GSGAs (A0) require no communication since all com-putation is performed on a single processor. Globally synchronized GSGAs (A1) useglobal synchronization to guarantee that all border regions for all of the processors
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(a) (b)Figure VI.3: Border areas used by (a) strip partitions and (b) box partitions.have been communicated before any of the processors can proceed in the next gener-ation. A barrier method is used to globally synchronize the termination check.Locally synchronized GSGAs (A2) allow each processor to proceed to thenext generation if it has received updated border regions and has satis�ed its neigh-bors' requests for updates to their border regions. Termination signals are also locallysynchronized with a small number of short messages.Asynchronous GSGAs (A3) do not require each processor to satisfy all re-quests for updated borders before continuing; only pending requests are satis�ed. Fur-ther, each processor does not wait to have all of its requests satis�ed by its neighbors,but simply updates border regions with the requests that have been satis�ed. Asyn-chronous GSGAs will probably have a faster execution time than the synchronousGSGAs, but processors may frequently be using border regions that are inconsistentwith the true state of the parallel system. My experiments examine the impact ofthis design. Termination signals broadcasted to the processors and are asynchronouslychecked by each processor.Finally, independent GSGAs (A4) do not perform communication to updatetheir border regions. Each processor runs independently, except for asynchronoustermination checks. This type of GSGA provides a benchmark for determining theimportance of communicating the border regions.



85VI.C Complexity Analysis IBecause there are no convergence proofs for the GA, we cannot exactly de-termine the e�ect that parallelization will have on the rate at which the GA generatesoptimal solutions. We can, however, examine the cost of executing k generations. Inthis section, I present a deterministic complexity analysis. This analysis assumes thatwe can ignore variability that can occur when the genetic operators are applied, aswell as the e�ects of system load 
uctuations. Since the traditional genetic operatorsare relatively inexpensive, this complexity analysis provides a good characterizationof the performance of the GSGA. In the next section, this analysis is extended toconsider the variability of the genetic operators.VI.C.1 Time ComplexityLet Tgen be the time to perform selection. Given a neighborhood size s and aproblem representation length �, the time complexity needed to perform selection andapply the crossover and mutation operators is O(s+ �) when using local tournamentselection, and O(s log s+ �) when using local proportional or rank selection [87]. LetTf is the time to perform a single function evaluation, which is problem dependent,and let Tflop is the time needed to perform a single 
oating point operation. Byignoring variability in the GSGA, we can summarize the work performed for everyindividual as (Tgen + Tf )Tflop.To simplify this analysis, let Nx = Ny = M and consider the complexityanalysis for a square grid. Let P = M2=p, which is the size of a subpopulation onany processor. Without loss of generality, I assume that p evenly divides into M2.Let Tstart be the time needed to initiate a message send, and Tsend be the time perword need to execute the message send.The deterministic time complexity for the serial algorithm, A0, isT1(k) = O(kM2Tflop [Tf + Tgen]):



86The deterministic time complexity for Ai isT ip(k) = T1(k)p�1 + kT icomm (VI:1)where T icomm = Tborder + T isync. The term Tborder is the cost of sending border infor-mation, and the term T isync is the synchronization cost.The synchronization cost, T isync, varies for the three parallel algorithms.Algorithm A1 computes a global termination condition with a log-time spanning treealgorithm, so T 1sync = O(Tstart log2 p). Algorithm A2 computes a locally synchronizedtermination condition, by communicating to the Nnbhr neighboring processors, soT 2sync = O(NnbhrTstart). Algorithm A3 does not compute a synchronized terminationcondition, so T 3sync = 0.For a given partition of the population grid, Tborder is the same for all threealgorithms. However, Tborder varies for the di�erent decomposition methods. Whenusing strip decomposition, every processor needs to send two messages to update theirneighbors' grids. Suppose every individual on the grid needs to send S words, andsuppose there is an overlap of m rows (or columns) between processors. ThenTborder = 2(Tstart +mSMTsend)so T ip(k) = T1(k)p�1 + k[2(Tstart +mSMTsend) + T isync]:When box decomposition is used, the cost of Tborder depends on the type of neigh-borhood used by the GSGA. When NEWS neighborhoods are used, every processorneeds to send four messages to update their neighbors' grids. If there is an overlapof m rows and columns between processors in the x- and y-dimensions, thenTborder = 4 Tstart + mSMpp Tsend!so T ip(k) = T1(k)p�1 + k "4 Tstart + mSMpp Tsend!+ T isync# :



87When a more general neighborhood is used, four additional messages are requiredand Tborder = 4 Tstart +  mSMpp +m2S!Tsend!so T ip(k) = T1(k)p�1 + k "4 Tstart +  mSMpp +m2S!Tsend!+ T isync# :Note that these time complexities are not exact for the box decomposition when p issmall. For example, if there are four processors then the population grid is partitionedinto four boxes. If NEWS neighborhoods are used, only two messages are needed sincethe grid is toroidal and only two processors are neighbors to any given processor.VI.C.2 Performance AnalysisTo measure the performance of the parallel GSGAs, I analyze their e�-ciency. The e�ciency of Ai after k iterations is�ip(k) = T1(k)pT ip(k) :For the deterministic parallel GSGAs, this expands to�ip(k) = p�1 "1p + kTborderT1(k) + kT isyncT1(k) #�1Now let �1 = Tstart=Tflop and �2 = Tsend=Tflop. The e�ciencies for the three decom-positions areStrip Decomposition�ip(k) = p�1 "1p +  1M2(Tf + Tgen)! 2�1 + 2mSM�2 + T isyncTflop!#�1 (VI:2)Box Decomposition- NEWS neighborhoods�ip(k) = p�1 "1p +  1M2(Tf + Tgen)! 4�1 + 4mSM�2pp + T isyncTflop!#�1 (VI:3)



88Box Decomposition- General neighborhoods�ip(k) = p�1 "1p +  1M2(Tf + Tgen)! 8�1 + 4mSM�2pp + 4m2S�2 + T isyncTflop!#�1(VI:4)All of these e�ciencies approach one as M and Tf increase. I expect these two factorswill often be large in practice, so the e�ciency of the parallel GSGAs should be good.To analyze the relative utility of the decomposition methods, we comparethe e�ciencies in equations (VI.2) and (VI.4). Some simple algebra shows that thebox decomposition method will have a better e�ciency if�1�2 < mS3 "M  1 � 2pp!� 2m# :This inequality indicates that box decomposition becomes more e�cient than stripdecomposition as p, M and S increase. On many architectures with coarse-grainedparallelism, �1=�2 is not small; on the nCUBE2, it is approximately 80. Thus stripdecomposition may be more e�cient when p is small, and if S and M are not toolarge. Finally, note that the e�ciency of the strip decomposition can be a�ectedby the dimensions of the population grid. If the e�ciency for strip decompositionis generalized to an Nx by Ny grid, and partition along the y-dimension, then thee�ciency is�ip(k) = p�1 "1p +  2(Tf + Tgen)NxNy! (�1 +mSNx�2) + T isyncTflop #�1For a �xed population size, this e�ciency is maximized when Nx is one. WhenNx is one, the population consists of a simple array, and communication is minimalsince neighboring processors only need to communicate the neighborhood of a singleindividual. However, results reported by Gordon and Whitely [35] and others indicatethat GSGAs using this type of structured population are less likely to �nd optimalsolutions than GSGAs that use populations structured on a 2D grid.



89VI.D Complexity Analysis IIThe complexity analysis in the previous section assumes that the applicationof genetic operators introduces variability that has a minimal e�ect the complexity ofthe GSGA. This assumption appears reasonable for GSGAs that employ the standardgenetic operators: crossover and mutation. The cost of applying these operators islow relative to the cost of performing the function evaluations and selection. Further,these operators are applied with frequencies near zero and one, which reduces theexpected variability that they introduce (see below).When expensive genetic operators are employed, the variability of the geneticoperators must be directly incorporated into the complexity analysis of the GSGA.The following analysis examines the complexity of GSGAs that employ local search.Local search is considered because it is an exemplar of expensive genetic operators,but this analysis applies to any genetic operator.The deterministic complexity analysis can be extended to include expensivegenetic operators by applying a �xed-cost local search to a �xed fraction of the popu-lation. An example of a �xed-cost local search is a random local search method, likethe one described by Solis and Wets [84], which is terminated after a �xed number offunction evaluations. Using local search in this manner, the deterministic computa-tional complexity is a simple extension of our previous analysis. Let � be the fractionof the population that uses local search, and let Tls be the time complexity of thelocal search. Then the complexity for A0 isT1(k) = O(kTflop hM2(Tf + Tgen) + lM2�mTlsi):The deterministic complexity of A1, A2 and A3 simply uses this value in equa-tion (VI.1).Indeterminism can be introduced to the GSGA by either applying the localsearch to a randomly selected subset of the population, or by allowing the cost ofthe local search to vary. When local search is randomly performed on a subset ofthe population, the complexity analysis depends on the distribution of the cost of the



90partitions for each iteration. The cost of a local search can vary if the local searchalgorithm uses stopping criteria that depend on the characteristics of the function atthe current solution. For example, gradient information can be used to terminate localsearch algorithms when the solution is a critical point of the function. When usingvariable cost local search, the complexity depends on the sum of the distributions ofthe cost of the local searches.VI.D.1 Local Search on Random SubsetsStarting local search on a random subset is simply the �xed frequency localsearch described in Chapter V. Let � be the probability that local search is startedfrom each individual. In this case, the complexity of an iteration can be modeled asa binomial random variable Y that assumes values Tflop(Tf + Tgen) and Tflop(Tf +Tgen + Tls), where Tls is the �xed cost of the local search.Since the cost of each iteration of A0 is a binomial random variable, the com-putational cost of A0 is a sum of k binomially distributed variables with parametersM2 and �. Therefore, the computational cost of A0 can be modeled as a binomiallydistributed variable with parameters kM2 and �. The expected complexity of A0 isE(T1(k)) = O �kM2Tflop(Tf + Tgen + �Tls)�Because A1 is globally synchronized, its complexity is the sum of the com-plexity of every iteration. The complexity of each iteration is the sum of the cost ofcommunication plus the cost of the longest process. Let Yi be the cost of the i-thprocess. The complexity isE(T 1p (k)) = O �kE(Yn:n)Tflop + kT 1comm� :where Yn:n = maxi=1;:::;nYiAn analytic expression for E(Yn:n) is not available because Y is a binomial randomvariable. However, when either P or P= log p is large, we can approximate Y by a



91normal random variable, Y 0, with mean � and standard deviation �, where� = P (Tf + Tgen + �Tls)and � = Tlsq�(1 � �)P :Applying the approximation to Y 0n:n used in Kruskal and Weiss [53], we haveE(T 1p (k)) � O �kTflopP (Tf + Tgen + �Tls) + kTflopTlsq2�(1 � �)P log p+ kT 1comm� :(VI:5)To analyze A3, we compare the maximum length of each process indepen-dently. Since the computational cost of each process is the sum of k binomial dis-tributed variables with parameters P and �, the sum is itself a binomial distributedvariable, with parameters kP and �. We can apply the same approximation used forA1 to getE(T 3p (k)) � O �kTflopP (Tf + Tgen + �Tls) + TflopTlsq2k�(1 � �)P log p+ kT 3comm� :This is an upper bound on the time complexity, since the communication complexitymay be less than T 3comm. It is possible (and perhaps likely) that processors will notreceive requests to update all of their neighbors' border regions every generation.The complexity of A2 is more di�cult to determine, since the cost of thelongest processor after k iterations is not independent of the cost of the other proces-sors. It is clear that E(T 1p (k)) � E(T 2p (k)) � E(T 3p (k)):since synchronization penalizes A1 more than A2, and since A3 is not penalized bysynchronization. It is not di�cult to show thatE(T 2p (k)) � O(E(Y2n:2n) + (k � 1)E(Y2:2))but general upper bounds have not been determined.The e�ciency of A1 and A3 isE(�1p(k)) = p�1 "1p +  1M2(Tf + Tgen + �Tls)! B1 + T 1commTflop !#�1



92and E(�3p(k)) = p�1 "1p +  1M2(Tf + Tgen + �Tls)! Bk + T 3commTflop !#�1 (VI:6)where Bj = TlsMs2�(1 � �) log pjp (VI.7)The term Bj represents the penalty introduced by the variability of the local search.This term is zero when � is zero or one, and is minimized when Tls is small.1 Theterm Bj is also minimized when p and j increase. Since Bk is used in equation (VI.6),the e�ciency of A3 improves as the number of iterations of the algorithm increases.Figure VI.D.1 illustrates how �1p(k) is a�ected by � and T icomm. Consideredas a function of �, the e�ciency has one minima that occurs for small �. If T icomm = 0,then the e�ciency is minimized when B1 is maximized, which occurs at� = Tf + Tgen2(Tf + Tgen) + Tls � 0:5When Tls is much larger than (Tf +Tgen), the term Bj is maximized when � is small.As T icomm increases, the performance for large � decreases, but the minima movesvery little.VI.D.2 Variable Length Local SearchIf the distribution of the cost of the local search is known, the same analysiscan be applied to determine the computational complexity. The complexity analysiswill be based on the distribution of each processor's iteration, which will be the sumof the distributions of P local searches. Distributions of sums can be analyticallydetermined for many distributions, so this analysis should be straightforward.I expect that the distribution of the cost of local searches will change as theGSGA samples di�erent regions of the search space. Since the cost of each iteration1This con�rms our assumption in section VI.C concerning the minimal impact of the standardgenetic operators. Since they are inexpensive and are applied with high or low frequencies, theyintroduce a small penalty to the overall e�ciency.
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(a) (b)Figure VI.4: Comparison of e�ciencies for di�erent local search complexities for (a)Tls = 100Tflop and (b) Tls = 1000Tflop. The three curves in the �gures contrast thee�ect of di�erent values of T icomm. The curves graph �1p(k) with neighborhoods of size5, Tf = 1, p = 16, and P = 144.of A1 can be independently computed, the complexity analysis in equation (VI.5) caneasily be generalized to allow the cost to vary as this distribution changes. However,the complexity of A3 depends on the distribution of the sum of each processor's costson each iteration. Thus it may be more di�cult to provide a general analysis of thecomplexity of A3.VI.E MethodsTo validate the theoretical analysis of the GSGA, I implemented an GSGAand evaluated its performance on the Intel Paragon at the San Diego SupercomputerCenter. The GSGA was implemented using the MP++ and LPARX routines de-scribed in Kohn and Baden [52]. The LPARX routines were used to implement theinter-process communication in the globally synchronous GSGA, and were modi�edto perform inter-process communication in the locally synchronous and asynchronousGSGAs. The parallel GSGAs were evaluated using the Rastrigin function. GSGAswith 
oating point encoding were used in the experiments. The crossover rate was 0.8



94and the mutation rate was 0.01. Proportional selection was used to select individualswithin each neighborhood. The theoretical analysis indicates that small neighborhoodsizes are most e�cient, since this minimizes the total cost of performing selection.In the experiments, I used the minimal neighborhood, which only includes the twoimmediate neighbors along each dimension of the population grid (see Figure VI.2a).Measuring the e�ciency for the parallel GSGAs requires the calculation ofboth T ip, the time to complete for p processors, and T i1, the time to complete for oneprocessor. For the parallel GSGAs, the calculation of the e�ciency is complicatedby the fact that the algorithm for the uniprocessor GSGA di�ers from the algorithmfor the p-processor GSGAin their use of random number generators. On a singleprocessor, one random number generator is used; on p processors, each processor usesa separate random number generator.To calculate the e�ciency, I on an indirect means of measuring T i1. Recallthat the time complexity for Ai isT ip(k) = T1(k)p�1 + kT icommThis indicates that we can estimate T i1 by summing the completion times for thep processors and subtracting the time spent performing communication. When an-alyzing the e�ciency in the experiments, the completion times do not include thetime required to setup and initialize the GA, but simply include the time required toexecute all of the generations.VI.F Experimental ResultsThese experiments examine GSGAs run with 4, 16 and 64 processors. Unlessotherwise stated, the experiments were run using box decomposition on a squarepopulation grid, so the population grid on every processor is square. The GSGAswere terminated when a solution with value 0.1 was found, or after 1000 iterations.All e�ciency values are averaged over 10 trials. Number of function evaluations aremultiples of 104.



95GSGA p �p Num CPUEval SecondsGlobal 4 0.84 20 104.1Sync 16 0.81 14 80.5(A1) 64 0.75 13 88.0Local 4 0.85 19 104.9Sync 16 0.77 14 88.7(A2) 64 0.69 13 94.44 0.94 17 79.6Async 16 0.94 15 71.5(A3) 64 0.94 13 64.74 1.00 21 93.9Indep 16 0.99 17 75.8(A4) 64 0.99 15 70.7Table VI.1: Performance of GSGAs using 24 by 24 grids on each processor.To match the experimental results to the theoretical analysis, the the e�-ciency of the GSGAs was calculated. The number of function evaluations reportedin the results are the maximum number of function evaluation across the processors.The numer of CPU seconds is the is the maximum number of CPU seconds since thebeginning of the �rst generation across the processors.VI.F.1 Results without Local SearchTable VI.3 shows the e�ciency of the parallel GSGAs when the computationon each processor is kept constant. For these experiments, each processor uses a 24by 24 grid. When run with 4, 16 and 64 processors, the GSGAs are optimizing withgrids of dimension 48, 96 and 192 respectively.To compare the e�ciency of GSGAs for smaller grids, these results are du-plicated with each processor using a 12 by 12 grid. When run with 4, 16 and 64processors, the GSGAs are optimizing with grids of dimension 24, 48 and 96 respec-tively. Table VI.2 summaries the results of these simulations.22Note that the number of function evaluations di�ers between A1 and A2 because these algorithmsemploy di�erent termination conditions.



96GSGA p �p Num CPUEval SecondsGlobal 4 0.67 9.1 61.7Sync 16 0.57 4.9 48.5(A1) 64 0.56 3.5 32.1Local 4 0.68 9.1 60.6Sync 16 0.66 5.0 36.3(A2) 64 0.62 3.6 30.54 0.85 10.0 57.5Async 16 0.81 5.4 31.3(A3) 64 0.81 3.6 21.0Table VI.2: Performance of GSGAs using 12 by 12 grids on each processor.Next, the GSGAs were modi�ed to eliminate redundant function evaluationsfor individuals that are not modi�ed. Checks were made to insure that crossover didnot generate a new individual, and that the individual was not mutated. Table VI.3summarizes the results of these simulations.Finally, I compare the performance of the block partition to the strip parti-tion. To compare the strip partition to the results in Table VI.1, every processor usesa 3 by 192 grid. When run with 4, 16 and 64 processors, these GSGAs are using gridsof dimension 12 by 192, 48 by 192, and 192 by 192. Table VI.4 summarizes the resultsof these simulations. Several authors have noted that modifying the dimensions ofthe population grid may impact the rate at which the algorithm optimizes. Thus, thestatistics for the number of function evaluations and iterations may not be directlycomparable to the results in Table VI.1.VI.F.2 Results with Local SearchI examine the impact of local search using 16 processors with a 12 by 12grid on each processor. Solis-Wets was run for 100 function evaluations, at frequencies0.0625, 0.25 and 0.5. Table VI.5 summarizes the results of these simulations.



97GSGA p �p Num CPUEval SecondsGlobal 4 0.84 9.6 92.3Sync 16 0.82 7.1 68.4(A1) 64 0.78 6.8 72.0Local 4 0.84 9.6 92.7Sync 16 0.81 7.1 72.3(A2) 64 0.74 6.9 81.14 0.94 8.2 69.1Async 16 0.93 7.6 64.4(A3) 64 0.94 7.0 60.3Table VI.3: Performance of GSGAs using 24 by 24 grids on each processor, withbookkeeping to avoid unnecessary function evaluations.GSGA p �p Num CPUEval SecondsGlobal 4 0.88 16 82.9Sync 16 0.81 14 78.6(A1) 64 0.70 13 89.1Local 4 0.89 16 80.5Sync 16 0.83 14 75.7(A2) 64 0.71 14 90.24 0.96 18 83.4Async 16 0.94 15 73.6(A3) 64 0.89 13 69.2Table VI.4: Performance of GSGAs using strip partitioning with 3 by 192 grids oneach processor.



98GSGA � �p Num CPUEval Seconds0.0 0.57 4.9 48.5Global 0.0625 0.62 9.3 53.5Sync 0.25 0.78 22.0 98.3(A1) 0.5 0.86 30.0 123.50.0 0.66 5.0 36.3Local 0.0625 0.64 10.0 54.6Sync 0.25 0.79 23.0 99.5(A2) 0.5 0.86 32.0 125.20.0 0.81 5.4 31.3Async 0.0625 0.97 9.9 35.9(A3) 0.25 0.98 23.0 79.20.5 0.98 32.0 109.8Table VI.5: Performance of GSGAs using 12 by 12 grids on each processor, with localsearch frequencies 0.0625, 0.25 and 0.5.VI.G DiscussionThese experimental results are consistent with many of the predictions madeby the analysis of the parallel GSGAs. Consider the results in Tables VI.1, VI.2and VI.3. As expected, the e�ciency of the GSGAs is related to the degree of syn-chronization and communication. GSGA A1 has the lowest e�ciency, since it requiresan expensive global synchronization. The e�ciency of A2 is about the same as A1,but it is a bit higher for smaller grid sizes. The e�ciency of A3 is higher than the syn-chronized GSGAs, but it is less than A4, since this algorithm uses no communicationbetween the processors.Note that the results of the synchronized GSGAs exhibit a decline in e�-ciency as the number of processors increases. This is consistent with the fact that thesynchronization penalty is related to the number of processors that are synchronized.Since A3 does not use synchronization, the e�ciency remains roughly invariant as thenumber of processors is varied.The e�ciencies in Table VI.1 are higher than those in Table VI.2. This



99is consistent with the analysis, and re
ects the in
uence of the M parameter. TheGSGAs with 24 by 24 grids spend more timeworking in parallel than the GSGAs usingthe 12 by 12 grids. Note, however, that the e�ciencies in Table VI.3 are comparableto those in Table VI.1. This is surprising since the number of function evaluationsreported in Table VI.3 are midway between those reported in Tables VI.1 and VI.2.We might expect to have the e�ciencies reduced to a point midway between thee�ciencies in Tables VI.1 and VI.2. This suggests that communication costs play alarge role in determining the e�ciency for our test problem.The absolute performance of the GSGAs can be compared using the numberof function evaluations. Since A1 and A2 are synchronized, they have nearly identicalperformance. They di�er only because they use di�erent methods of synchronizingthe termination signals, which leads A2 to use slightly more function evaluations. Theperformance of A3 is roughly the same as the synchronized GSGAs, which suggeststhat it is not adversely a�ected when border areas are out of date. The performanceof A4 is consistently worse than the other algorithms.Comparing the e�ciencies in Tables VI.1 and VI.4 allows us to contrast thebox and strip partitioning. The only factors that di�er between the two experimentsis that the strip partitioning requires half as many messages as the box partitioning,but communicates four times as many individuals in the population. For A1, strippartitioning is better than box partitioning for low numbers of processors and is worsefor large numbers of processors. This is consistent with our comparison of the analytice�ciency of strip and box partitioning. However, the e�ciency of strip partitioningis slightly better for A2, and is about the same for A3. This suggests that the methodof synchronization may impact the relative utility of the partitioning methods.Finally, Table VI.5 demonstrates the impact of the local search operator onthe e�ciency of the GSGAs. As expected, the e�ciency increases as the frequency oflocal search increases, for both the synchronous and asynchronous algorithms.



100VI.H ConclusionsThe analytic and experimental analysis of MIMD GSGAs demonstrate thatthey will scale well for large problems. The comparison of the synchronization meth-ods indicates that there is no appreciable penalty (in terms of convergence of the GA)for using asynchronous GSGAs. Since this method has no synchronization penalties,it is more e�cient than the synchronous GSGAs. Finally, these results demonstratethat local search can be e�ciently used with these parallel GSGAs.One of the arguments for using SIMD machines is the ability to use verylarge populations. The largest of these experiments uses 64 processors with 24 by 24grids. These simulations are executing a parallel GSGA with a 192 by 192 grid thathas a total of 36,864 individuals in its population. These GSGAs remain e�cientfor problems of this size, which indicates that MIMD GSGAs can solve the sameproblems tackled by SIMD GSGAs. In addition, the MIMD GSGAs o�er the abilityto use moderate size populations. A comparison of the results in Tables VI.1 and VI.2shows that using a very large population may be less e�cient than using a smallerpopulation, in both CPU time and number of function evaluations.I expect that these MIMD GSGAs will be competitive with other MIMDGAs, such as the IMGA. Gordon and Whitley [35] show sequential simulations ofparallel GAs in which the performance of GSGAs was competitive with other par-allel GAs. They note that their simulations used a simple GSGA, and they expectGSGAs to perform very well when more sophisticated methods are employed. Onesuch method is the bookkeeping done by our GSGAs to avoid unnecessary functionevaluations. Since GSGAs tend to have greater redundancy in their populations, thismay provide MIMD GSGAs an e�ciency advantage over other MIMD GAs.



Chapter VIIApplicationsTo validate the performance of GA-LS hybrids, I have applied them to sev-eral practical problems: a neural network problem and to two molecular structuralproblems. The neural network problem is the six-bit symmetry problem, which hasbeen previously optimized with GA-LS hybrids by Belew, McInerney and Schrau-dolph [7]. The �rst molecular structural problem is the problem of solving for amolecule's conformation. This problem has been explored by a number of di�erentauthors [49, 55] and there are experiments with GA-LS hybrids for which a compar-ison is possible. The second molecular structural problem is the problem of dockingdrug candidates to a target macromolecule [34], which is an important problem inautomated drug design. The drug docking results with GA-LS hybrids are comparedwith simulated annealing, the optimization method used by Goodwell and Olsen [34].VII.A Neural NetworksNeural networks are simple parametric models that are thought to looselymodel biological nervous systems [80]. While there are a variety of types of neural net-works, I have examined feedforward neural networks, which perform a deterministicmapping from a set of inputs to a set of outputs [81].Figure VII.1 illustrates a multilayer feedforward neural network. Each node101
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Figure VII.1: Multilayer feedforward neural network with one hidden layer.in the network computes a weighted sum of the node's inputs that is passed into alogistic function. Let fx1; : : : ; xng be n inputs to a node, and fw0; : : : ; wng be then+ 1 weights. Each node computesg  w0 + nXi=1wifi!where g(x) is the logistic functiong(x) = 1=(1 + exp�x):Because the nodes of the neural network perform a nonlinear transformation of theirinputs, feedforward neural networks are capable of performing nonlinear transforma-tions of the inputs.Suppose we are given a set of data f(x1; y1); : : : ; (xn; yn)g for which we wouldlike to know the relationship between the xi and the yi. Feedforward neural networksare parametric models of the form y = f(x;w), where w is a vector of the weights(parameters) of the neural network. To estimate the relationship between the xiand the yi, minimization techniques are used to determine the weight vector w� that



103minimizes J(w) = nXi=1E(yi; f(xi; w))where E(�) computes the error between the predicted y value and the actual y value,yi. A common error function is the squared errorE(a; b) = ka� bk2When using a smooth error function like this, the gradient of J(w) is computed forfeedforward neural networks by back-propagating the errors on the outputs throughevery layer of the network [81].The weight vector for neural networks is typically large. Therefore, solvingneural network problems involves the minimization of an error criterion over a highdimensional search space that has a large number of local minima. In theory, theglobal minimum of the search space is desired. In practice, minimization is usuallyperformed using local search techniques that can only guarantee solutions which arelocally optimal.Belew, McInerney and Schraudolph [7] use GA-LS hybrids to minimize J(w)for the six-bit symmetry problem. In the six-bit symmetry problem, patterns areclassi�ed as one if the left three bits are mirror images of the right three bits. Thus110011 is classi�ed as one, while 101110 is classi�ed as zero. Their experiments usethe GA to control repeated restarts of neural network local searches using back-propagation (BP). Their results indicate that GA-BP hybrids outperform both theGA and multistart local search using BP.The experiments in this section extend these results in two ways. First, theGA-LS hybrids use local search with various frequencies. Second, the performance ofmethods using BP is compared with methods using conjugate gradient and batch BP.Unlike standard BP, batch BP uses complete calculation of J(w) is used to updatethe current weight vector. Thus, Equation II.1 becomeswt+1 = wt +�wt�wt = ��t5w J(w)



104Batch BP can be viewed as a simple gradient descent procedure. Unlike BP,the gradient calculation in BP is a reliable estimate of the current descent direction.Hertz, Krogh and Palmer [39] note that the relative performance of BP and batchBP is problem dependent, though BP seems superior in many cases.Table VII.1 compares the performance of MC, MS, GA and GA-LS hybridsfor the three local search methods. The GA-LS hybrids are compared for three �xedfrequencies. This is a relatively easy problem, so the more sophisticated methods ofapplying local search selectively were not performed.Following Belew, McInerney and Schraudolph, BP and batch BP were runfor 200 epochs. To make BP comparable to the other methods, evaluations for anentire epoch are counted as a single function evaluation. These experiments use athree-layer feedforward network with six input units, six hidden units and one outputunit. Initial weights for the networks were chosen in the interval [�0:5; 0:5]. Thelearning rule in Equation II.3 is used to perform BP, with � = 0:5 and �t = 2:5=pt.Belew, McInerney and Schraudolph used �t = 2:5, but this form of �t worked verypoorly for batch BP. The large � and �t values identi�ed by Belew, McInerney andSchraudolph were selected for BP. It is not clear that these are also the best valuesfor batch BP. Method Freq BP Batch BP CGMC 0.0563MS 0.0467 0.0546 1:59 � 10�60.0 0.0341GA 0.0625 0.0018 0.0535 7:32 � 10�70.25 0.0013 0.0538 1:51 � 10�81.0 0.0015 0.0543 3:30 � 10�9Table VII.1: Results for 6-Bit Symmetry.A statistical analysis of these results shows signi�cant di�erences betweenalmost every method. In particular, the GA-CG hybrids are signi�cantly better thanthe GA-BP hybrids, which are signi�cantly better than the GA-Batch-BP hybrids.The GA-LS hybrids appear to be more e�cient when used with high frequency of local



105search, but the statistical analysis does not indicate signi�cant di�erences betweenthe frequencies of the GA-LS hybrids. It is interesting to note that the methods usingbatch BP were worse than the GA alone, while the methods using conjugate gradientwere better than the GA. This attests the ine�cient use the gradient information inbatch BP.VII.B Molecular ConformationVII.B.1 IntroductionThe goal of molecular conformation problems is to solve for the three dimen-sional structure of a molecule (its tertiary structure), given only a description of theatoms and bonds that comprise the molecule (its primary structure). One approachto solving these problems uses a model of the potential energy of the molecule's con-formations that is minimized to �nd conformations with low energy. Most simplemodels assume that the conformational energy, V , can be approximated by a sum ofdi�erent types of energy contributions. For example, we could de�ne V asV = Vbond + Vangle + Vtorsion + Vnon�bond + VelectrostaticA detailed description of these terms is given in Le Grand and Merz [54]. Clark,Cramer and Van Opdenbosch [10] describe many of the \standard" force �elds. In-tramolecular forces are modeled by the terms for bond stretching, bond torsion andangle valence. The bond stretching term is usually represented asVbond = Kbond(rij � r0)2where rij is the distance between the i-th and j-th atoms. Vbond is usually de�nedwith a relatively large bond constant, Kbond, to hold the bond distance fairly constantat r0. The bond torsion (dihedral) term measures the energy related to the stressesput on double bonds. This energy is often quite speci�c to the type of bond that ismodeled. Le Grand and Merz [54] distinguish the angle valence energy from other



106torsion energies Vangle = 12K�ijk (�ijk � �0)2where �ijk is the angle between the bond linking the i-th and j-th atoms and the bondlinking the j-th and k-th atoms. Like the bond stretching term, Vangle measures theenergy added bymoving a bond pair from its ideal angle. The intermolecular forces aremodeled by the terms for non-bonded interactions and electrostatic interactions. Thenon-bonded interactions account for van der Walls forces, which are often modeledwith Lennard-Jones 12-6 potentialsVnon�bond = � r�rij !12 � 2� r�rij!6The electrostatic interactions account for interactions between particle charges onatoms. The typical, point charge interaction uses a simple Coulumb expressionVelectrostatic = qiqj� rijwhere qi and qj are particle charges, and � is the dielectric constant of the medium inwhich the molecule is located.I consider a simple two dimensional conformation problem that is examinedin Judson et al. [49]. This conformation problem concerns a molecule composed ofa chain of identical atoms that are connected with rigid rods of length one. Thepotential energy of this molecule can be modeled byV = Vnon�bond (VII.1)= n�1Xi=1 nXj=224 1rij!12 � 2 1rij!635 (VII.2)This equation accounts for the van der Walls forces in the non-bonded interactions.This function has two types of local minima: knotted and unknotted. Ex-amples of these two types of con�gurations are shown in Figure VII.2. Figure VII.2ais a knotted con�guration, in which the bonds of the molecule cross at some point.Local search methods cannot pull an atom through a knot because there is a very
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(a) (b)Figure VII.2: Examples of (a) knotted and (b) unknotted con�gurations. Con�gura-tion (b) is a global minimum of the energy function for the 19-atom molecule.high energy barrier preventing this. The global minima of this function are approx-imately located on a hexagonal grid with unit spacing. Figure VII.2b is an exampleof a global minimum. When minimizing a 19-atom molecule, the global minima areknown to have a value of -45.3 [49].VII.B.2 ParametrizationThe distance terms rij can be parameterized in two ways: (1) using the co-ordinates of the atoms, and (2) using the bond angles and bond lengths. Figure VII.3illustrates the relation of these parameters to the structure of a simple molecule. An-alytic gradients can be calculated for either of these parametrizations, but the angleparametrization is easier to use with GAs since the constraints on the bond lengthsare implicit in this representation. Minimizing the energy with the coordinate rep-resentation would require the use of constrained optimization techniques to keep thebond lengths at a �xed value.Since the global minima are approximately located on a hexagonal grid, theangles of the global minima are near multiples of �=3. We can use this informationabout the problem to discretize the space of angles, thereby reducing the space ofsolutions that are searched by the GA. However, the solution must still be minimizedin the continuous space of angles, since the optimal solution may not be an exact
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d3Figure VII.3: Illustration of a simple molecule with dimensions used to parametrizedthe potential energy.multiple of �=3. Thus the GA and local search routines are searching di�erent spaces.This is an example of a genotype-phenotype distinction, which was mentionedin Section II.C.3. A maturation function is used to map the genotype generated bythe GA into the space of phenotypes used by the local search method. In this case,the mapping is simply the identity map. To perform Lamarckian local search, areverse map is also needed. In the experiments reported below, the reverse mapsimply discretizes the angle � to �0 using the following rule:�0 = $3� + �=2� %VII.B.3 ResultsI have tested the e�ciency of GA-LS hybrids using both the angle anddiscrete angle representations. For comparison, the performance of MC, MS and theGA have also been tested. A GA with an integer representation is used to search thediscretized angle space. The mutation operator for this integer GA changes a singleinteger to a uniformly selected integer in the set of possible discretized angles. TheMC and MS methods were also modi�ed to uniformly generate discrete angles andthen perform local search in the continuous angle space.



109Method Angles Discr AnglesMC -27.76 -26.83MS-SW -30.74 -30.45MS-CG -29.09 -28.67GA -28.57 -31.27Table VII.2: Results for MC, MS and GA on the 2D conformation problem.Method LS Freq Angles Discrete AnglesGA-SW GA-CG GA-SW GA-CGFixed 0.0625 -32.47 -30.93 -42.23 -40.88Freq 0.25 -32.86 -31.30 -42.12 -38.211.0 -33.71 -31.16 -40.56 -36.51Inequ 0.0625 -32.53 -31.00 -42.14 -41.10Metric 0.25 -33.11 -31.12 -42.04 -37.771.0 -33.17 -32.05 -40.02 -36.39L2 0.0625 -32.83 -30.47 -43.01 -42.96Metric 0.25 -32.88 -31.12 -42.74 -42.831.0 -33.81 -31.15 -42.95 -41.41L2 0.0625 -31.07 -29.33 -42.92 -43.10Metric 0.25 -32.11 -29.52 -43.01 -42.93Adaptive 1.0 -33.45 -30.57 -42.83 -42.29Table VII.3: Results for GA-LS hybrids on the 2D conformation problem.Table VII.2 shows the average performance of MC, MS and GA after 150000function evaluations. Table VII.3 shows the average performance of the GA-LS hy-brids using the local approximation methods.The performance of the GA-LS hybrids is signi�cantly better on the discreteangle representation. Note that the dynamics of the GA-LS hybrids di�er on the tworepresentations. On the angle representation, high local search frequencies are moree�cient, though a statistical test did not reveal signi�cant di�erences between themethods. On the discrete angle representation, low local search frequencies are moree�cient. A statistical test did not reveal signi�cant di�erences between the di�erentGA-SW hybrids, but the GA-CG hybrids using the L2 metric are signi�cantly betterthan the GA-CG hybrids using �xed frequency and the inequality metric. Finally,



110the GA-LS hybrids are signi�cantly better than MC, MS and GA.These results are not directly comparable to those of Judson et al. [49] sincethey report the �nal results after 107 function evaluations. However, they report thatthe best solution found with their GA-CG hybrids is -44.3. After 150,000 functionevaluations, the best solution found by these methods was -44.2. Further, whenGA-LS hybrids were used with elitism the best solution found was -45.3, the globaloptimum! Both of these results require the discretized angle representation, whichwas not used by Judson et al. The best result for the GA-LS hybrids using thecontinuous angle representation was -35.9 after 150,000 function evaluations.VII.C Drug DockingOne of the key elements of computer aided drug design is the docking of po-tential drug candidates to a target macromolecule. Manual methods of docking havebeen widely used [88]. They use sophisticated energy evaluations, but only allowthe user to examine a limit number of docking conformations. The docking methoddescribed by Goodsell and Olsen [34] examines a large number of docking confor-mations automatically. This method uses simulated annealing (SA) to search theconformation space (see Section II.B.3) and performs rapid energy evaluations usingmolecular a�nity potentials. Goodsell and Olson do not make a direct comparisonwith other automated docking methods like exhaustive search, but they note thatmethods like exhaustive search require simpli�ed energy evaluations to avoid pro-hibitively expensive computational costs. They argue that the sophisticated searchperformed by SA enables them to use robust energy evaluations while maintainingreasonable computational costs.The experiments in this section compare the performance of the GA andGA-LS hybrids to SA on a docking problem that models the docking of an inhibitorfor HIV protease. Evaluations of the docking conformations were performed usingthe Autodock software developed by Olson et al. [70]. The conformation energy was



111evaluated using molecular a�nity potentials, as described by Goodford [33]. Themacromolecule is imbeded in a three-dimensional grid, and the energy of interactionis calculated for di�erent atom types at every location of the grid. These energies arestored in tables that are used to rapidly compute the energy of a given conformation.Energies outside of grid have a default value of 1.0e5.This docking problem has a total of 19 parameters. Three parametersspecify the coordinates of the centroid of the molecule. The coordinates locatedon the grid are within the box de�ned by the points [�9:401;�5:022;�15:038] and[9:349; 13:728; 14:962]. Four parameters specify the quarternion (qx; qy; qz); qw. Thevalues qx, qy and qz specify a unit vector (i.e. q2x + q2y + qz = 1). This describesthe direction in which the molecule will be rotated by qw degrees. The remainingparameters specify the torsion angles of twelve rotatable bonds in the molecule, alsoin degrees.The docking potential was minimized with SA using the Autodock software.Autodock starts SA using starting coordinates of the molecule at (�2:0; 5:0; 7:7), theinitial quarternion at (1; 0; 0); 0, and the initial torsion angles are uniformly generated.The initial temperature for SA is 5000.0, and the temperature is reduced by a factorof 0.85 every cycle, so after k cycles the temperature is 5000:0(0:85)k . SA was runfor 50 cycles, each of which ran until 30,000 accepting states were found. To enablecomparisons with the other methods, energy evaluations for conformations locatedoutside the grid were counted as function evaluations.To minimize the docking potential using the GA and GA-LS hybrids, theranges of each of the parameters are normalized to [0:0; 100:0]. This normalizationinsures that mutations made to each dimension of the docking potential have thesame chance of making changes of the same proportion. Preliminary experiments withGAs using unnormalized parameters had poor performance. Also, the quarternionparameters specifying the unit vector are not normalized to a unit length until thepotential of each solution is evaluated. Thus, mutation treats all of the parametersuniformly. Finally, elitism is used in the GA and GA-LS hybrids.



112Method Freq Average BestMC 184.5 19.7GA -28.6 -93.4SA -98.7 -107.9GA-LS 0.0625 -94.7 -117.01.0 -108.4 -118.0Table VII.4: Results for docking problem.Table VII.4 compares the performance of MC, GA, the GA-LS hybrids andSA after 1:5 � 106 function evaluations. The average is over 5 repeated trials. Astatistical test of these results indicates that the GA-LS hybrids with frequency 1.0are signi�cantly better than MC. No other di�erences are signi�cantly di�erent. Fig-ure VII.4 graphically compares the performance of these methods.VII.D Summary and DiscussionThe results of these applications demonstrate the relative e�ciency of theGA-LS hybrids on a variety of di�erent types of objective functions. In each of theseapplications, the GA-LS hybrids perform much better than MC, MS and the GA.The results for the neural network problem illustrate the in
uence of the ef-�ciency of the local search method. In particular, the comparison between GA-Batch-BP and GA-CG illustrates that GA-LS hybrids are not necessarily more e�cient thanthe GA. Batch BP uses gradient information so ine�ciently that the GA-Batch-BPhybrid has worse performance than the GA alone.The experiments with the 2D molecular conformation problem con�rm thatthe adaptive methods can signi�cantly improve the performance of GA-LS hybrids.Further, these results provide evidence of the trade o� between the reliability ofthe competitive selection and the re�nement of the local search. Using the discreterepresentation constitutes an a priori bias since it focuses the GA's search on a subsetof the entire conformation space. For this problem, this bias improves the performance
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Figure VII.4: Optimization results for docking of inhibitor for HIV protease.of the GA and, consequently, makes low frequencies of local search most e�cient.Finally, the results for the drug docking problem compare the e�ciencyof the GA-LS hybrids with SA. The GA-LS hybrids compare favorably, even after1:5 � 106 function evaluations. Further, Figure VII.4 shows that the GA-LS hybridsperform much better at higher �-accuracies. In fact, I expect that the performance ofthe GA-LS hybrids could be improved by performing local search with the neighbor-hood structure used in SA. The SA routine provided in Autodock performs a specialtransformation of the quarternion parameters when generating local neighbors. Thistransformation is probably more appropriate than the neighbors generated by thenormal deviates used in Solis-Wets, so the comparison between the GA-LS hybridsand SA is conservative.



Chapter VIIIConclusionsVIII.A ConclusionsThe research in this dissertation has examined two general issues relatingto GA-LS hybrids. First, I have addressed questions concerning the best use of localsearch with the GA and have described methods that provide signi�cant improvementover standard GA-LS hybrids. The frequency of local search was the most in
uentialparameter in our methods, and an analysis of GA-LS hybrids using a �xed frequencyof local search provided considerable insight into the way the GA and local searchalgorithms interact. Our results indicate that the type of GA can in
uence the mannerin which the local search algorithm should be used with the GA. For example, I haveshown that my methods of reducing the local search frequency work particularly wellwith GSGAs, which have a many similar solutions in their populations.I have also described parallel GSGAs that can e�ciently utilize local search.These parallel GAs are a MIMD design of a GA initially implemented on SIMD ar-chitectures, where local search is di�cult to apply selectively. The analysis of theseparallel GSGAs indicates that they scale well to large populations, which is con�rmedby an experimental analysis. These experiments recommend the asynchronous GS-GAs since they perform well and have no synchronization penalties. MIMD GSGAshave been used with populations of up to 36,864 individuals, and I have argued that114



115they can be used to tackle the same problems to which SIMD GSGAs have been ap-plied. Further, I have noted that previous results indicate that these MIMD GSGAswill be competitive with other MIMD GAs.GA-LS hybrids have also been used to solve problems in three di�erent appli-cation domains: neural networks, molecular conformation and drug docking. Theseresults con�rm many of the observations made in the analysis of GA-LS hybrids.They con�rm that using the adaptive methods can signi�cantly improve the perfor-mance of GA-LS hybrids. A comparison is also made with simulated annealing, whichdemonstrates that GA-LS hybrids can perform better than simulated annealing, evenafter 1:5 � 106 function evaluations.This dissertation has made two other technical contributions. First, I haveanalyzed the performance of probabilistic multistart. This analysis proves that se-lecting local search with a �xed probability is worse than the best of either MC orMS. This suggests that selectively applying local search will only be useful if eitherthe global or local search method is used adaptively.I have also described a generalization of the biological notion of the F statis-tic. The F statistic has been generalized to provide a measure of similarity for ar-bitrary distance metrics and has been related to the method of �tness sharing. Thegeneralized F statistic is used by the distribution-based methods to selectively applylocal search.VIII.B Implications for Biological ModelsSection II.C.3 noted that much of the inspiration for GA-LS hybrids comesfrom natural systems. Evolutionary algorithms like the GA take many cues frommechanisms observed in natural evolution, and local search is often equated withmodels of learning. Conversely, this research on arti�cial methods of adaptive searchmay have implications for models of evolution and learning in natural systems.The superior performance of the GA-LS hybrids when compared with the



116GA appears to provide con�rmation of the \Baldwin E�ect" [6, 40]. The experimentsin Chapters V and VII indicate that learning can improve the e�ciency of the GA.Consequently, GA-LS hybrids run for fewer generations than the GA. From a biolog-ical viewpoint, this can be viewed as an increased rate of evolution, which is a primeindication of a Baldwin e�ect. Note that the e�ciency of GA-LS hybrids is improvedeven with simple local searches like Solis-Wets. This is important in natural systemswhere it is unlikely that additional information (like derivative calculations) is avail-able to guide learning, but the local sampling of the type performed by Solis-Wets isnot entirely unreasonable.The experiments in Chapter VII demonstrate that there are many occasionsin which GA-LS hybrids are most e�cient when local search is applied infrequently.For example, low local search frequencies are more e�cient when using large popu-lations or when using elitist GAs which have strong selective pressure. These resultssuggest that the �tness of the entire population may be improved even when only afraction of the population is applying learning methods.The distribution-based methods of adapting the local search frequency arereminiscent of the e�ects of inbreeding depression [38], and may be useful for studyingthe e�ects of inbreeding on learning in natural systems. Inbreeding depression refersto the detrimental e�ects of inbreeding, which is indicated by a high F statisticfor an individual. Now consider a GA-LS hybrid as a model of natural evolutionand learning. By itself each individual in a population would naturally want tohave a high probability of performing local search since that would maximize its�tness. However, the distribution-based methods lower an individual's local searchfrequency if its F statistic is high. This is analogous to the e�ect of inbreeding onphenotypic characteristics, where the local search frequency is viewed as a phenotypiccharacteristic of the individual.Two di�erences between GA-LS hybrids and models of natural systems mustbe considered when examining the biological implications of the results in this disser-tation. First, the �tness of individuals in natural systems is often dependent on the



117behavior of other individuals in the environment. In GA-LS hybrids, the �tness ofindividuals is independent of the �tness of other individuals in the population. As aresult, the optimal solutions identi�ed by a GA-LS hybrid may not correspond wellwith individuals in natural systems. Alternatively, populations of solutions that areoptimal with respect to an independent �tness measure may be susceptible to inva-sion from nonoptimal solutions when evolved using a dependent �tness measure. Inthis case, the optimal solutions are not biologically plausible. This phenomenon wasobserved in Ackley and Littman's arti�cial life model [3]. Nowak and May observesimilar phenomena in the context of game theory [69].The second di�erence concerns the manner in which the rate of evolution ismeasured in natural systems and in GA-LS hybrids. There are three ways the costof GA-LS hybrids can be evaluated. First, the cost of each generation is the sum ofevery operation applied to every individual (assuming a serial algorithm). When localsearch is applied infrequently, the cost of each generation decreases correspondingly.This is the most common method used in computational contexts. Second, the cost ofthe local search can be ignored completely, and the number of generations of the GAis used to measure the cost of the search. This measure has been used by Hinton andNowlan [40] and Nol�, Elman and Parisi [68]. Finally, the cost of each generation canbe equated with the length of the longest local search performed in the population.Thus if local search is used by any individual in the population, there is no additionalpenalty incurred by allowing the rest of the population to perform local searches. Thisis probably the most biologically plausible cost measure, but it assumes a synchronousmating schedule which may not be a biologically plausible assumption.VIII.C Future DirectionsThe methods that I have examined represent initial studies of some impor-tant areas of investigation. I describe some immediate extensions of this research anddiscuss some broader issues that need to be explored.



118VIII.C.1 GA-LS HybridsI have considered a basic set of GA-LS hybrids that can be extended in anumber of directions. First, additional methods of distribution- and �tness-basedselection of local search may be of interest. The emphasis of this research is ondistribution-based selection methods, but there are a variety of �tness-based methodsthat I have not considered here. As I noted earlier, most of the methods used toperform competitive selection in GAs can be used to perform �tness-based selectionof local search. Furthermore, it is possible to combine distribution- and �tness-basedmethods, which I expect to combine the advantages of both.The experimental results indicate that the type of GA used with local searchcan strongly in
uence the performance of the GA-LS hybrids. To simplify the analysisof the interactions between the GA and local search algorithms, relatively simple GAswere used in this dissertation. It is clear that further work needs to be done withGA-LS hybrids that use more sophisticated GAs. Methods like rank and truncationselection employ a stronger selective pressure, which focuses the GA's search morerapidly. Because of this stronger selection pressure, we expect that hybrids with thesemethods will require infrequent local search.VIII.C.2 MIMD GSGAsThe most important extension of the results with MIMD GSGAs involvesa comparison of this method with other MIMD GSGAs. Previous research withsequential models of parallel GAs indicates that MIMD GSGAs should be competi-tive with other MIMD GAs, but a direct comparison is needed to examine how thecommunication and synchronization costs a�ect the overall performance of MIMDGSGAs. There are a number of other technical issues that are also worth investigat-ing. First, the e�ciency of the GSGAs may be improved by \pipelining" requestsfor data between the processors. Since only a fraction of the grid on each processor



119is communicated with its neighbors, it is possible to evaluate the individuals in theborder regions �rst, perform communication with its neighbors, and then evaluatethe rest of the individuals. This interleaving of communication and execution shouldo�set some problems of load imbalance, and should improve even the asynchronousGSGA. Another issue that needs to be addressed is the manner in which redundancyis handled in the GSGAs. The experiments with sequential GSGAs indicate thatGSGAs have a lot of redundancy in the population. In preliminary experiments, Ifound that the redundancy was increased when the L2 metric was used to reducethe local search frequency. The problem with this increased redundancy is that thecost of the selection mechanisms became the principle cost of each iteration of thealgorithm. There are two ways that this problem could be handled. First, stoppingconditions could be introduced that terminate the simulation once the redundancy inthe population reaches a speci�ed threshold. Second, the selection mechanism couldbe modi�ed to avoid performing selection on local neighborhoods that contain a singlesolution. More research with these methods is needed to understand which of theseis the better alternative.Finally, I believe that there may interesting dynamics in the interaction be-tween the shape of the GSGA's neighborhood structure and the shape of the partitionsused to decompose the two-dimensional grid. For example, suppose strip partitionsare used and let the GSGA's neighborhood be rectanglar. The height of the rectanglarneighborhood a�ects the size of the border regions communicated between processors.This has implications for the complexity of the GSGA, but I also expect this to a�ectthe rate at which solutions are communicated between processors. Larger border re-gions should make it easier to communicate solutions between processors. Similarly,the width of the rectangular neighborhood a�ects the iteractions of individuals onthe same processor. Very wide neighborhoods should facilitate the transmision ofmore optimal solutions to other parts of the processor's grid. Thus it appears thatthese two dimensions of the neighborhood structure can in
uence the inter-processor



120and intra-processor communication of solutions. The best balance between these twofactors is not obvious, especially when non-square grids are used.VIII.C.3 General IssuesThe following are several general issues that are related to the current workand are worthy of investigation.Constrained Optimization The focus of this dissertation has been on uncon-strained global optimization. Several researchers have recently proposed methodsthat apply GAs to constrained optimization problems. A natural extension of theseresults would be to use GA-LS hybrids that combine GAs and local search meth-ods that utilize constraint information. This approach seems promising for problemswith highly nonlinear constraints that impose numerous local optima on the objectivefunction.Discrete Optimization These results o�er an understanding for GA-LS hybridsthat optimize functions de�ned on Rn. I believe that the analysis of these GA-LShybrids will generalize well to problems on a discrete domain. All of the mechanismsfor selectively applying local search are independent of the search space, so theyshould be applicable to discrete problems. I still expect that it will be harder togeneralize results from one discrete problem to another, but the discrete search spacemay make it easier to formally analyze the trade-o� between competitive selectionand local search.Extended Applications The results with the molecular structure problems canbe extended in a number of di�erent directions. Scaling these problems to higherdimensions should be interesting. Since solutions to these problems are expensiveto evaluate, sophisticated optimization methods are particularly important in higherdimensions. The reduced local search rate provided by the distribution-based methods



121should be particularly useful here. Also, conformation of more realistic molecules canbe performed to evaluate the potential of this approach.



Appendix AGeneralizing the F StatisticConsider a diploid individual with two chromosomes X and Y . These chro-mosomes can be decomposed into a sequence of alleles, fX1; : : : ;Xng and fY1; : : : ; Yng.The biological notion of F statistic provides a metric for analyzing the similarity of Xand Y with respect to a randomly mating population. When averaged over the entirepopulation, the F statistic provides a measure of the inbreeding, or homogeneity ofthe population.The biological de�nition of the F statistic simply measures the average num-ber of points at which X and Y di�er. We generalize the de�nition of the F statisticto allow for other distance measures between two chromosomes. As a consequence,the generalized F statistic can be computed for chromosomes on any space for whicha distance metric is available.A.A FormalismHartl [38] de�nes the inbreeding coe�cient of an individual (relative to thetotal population) to be FIT = HT �HIHTwhere 122



123� HT - the expected heterozygosity of an individual in an equivalent randommating total population� HI - the heterozygosity of an individualHI can be interpreted as either the average heterozygosity of all of the genes in anindividual or as the probability of the heterozygosity of any one gene. Let�(ai; aj) = 8><>: 0; ai = aj1; otherwisewhere ai and aj are two values of alleles. Then we can de�ne the di�erence betweentwo sets of alleles as D1(X;Y ) = 1n nXi=1 �(Xi; Yi) � HINote that this equation is independent of the cardinality of the set of alleles whichare contained in the individual. The only thing that matters is that the alleles aredi�erent.The value of HT can be formulated using D1. Let P be a distribution overthe space of possible sets of genes, G. ThenHT = ZG ZGD1(X;Y )dP (X)dP (Y )The dependency on the distribution P makes the F statistic relative to the level ofinbreeding that was present in the initial population.A.B GeneralizationThe distance measure D1 provides a notion of distance that depends onwhether the individual alleles in X and Y are di�erent. If we consider alleles thatassume values in an arbitrary space, we may have a notion of distance between thealleles. In these contexts, the measure D1 will be unnecessarily crude. Further, D1will be inappropriate when jGj is not �nite.



124Note that D1 is a metric on G. Given a metric D2 on a di�erent spaceof genotypes, G0, we can use the formulas for HT and HI to compute a generalizedF-statistic. The di�cult part of using the de�nitions in a general setting is thecomputation of HT . For example, let G0 = [A;B]n and let D2 be the L2 normD2(X;Y ) = kX � Y k2 = vuut nXi=1(xi � yi)2then the computation of HT is very di�cult, even when P is the uniform distribution.We now examine two metrics that can be analyzed when P is the uniformdistribution. These metrics will be useful when estimating the F-statistics of indi-viduals in GA's with 
oating point encodings. The initial population of the GA istypically created by sampling from a uniform distribution over G, so these F-statisticswill be appropriate.Let G0 = [A;B]n, and let D2 be the L1 normD2(X;Y ) = kX � Y k1 = nXi=1 jxi � yij;then HT = n3 (B �A)if P is uniform. If D2 is the squared L2 normD2(X;Y ) = kX � Y k22 = nXi=1(xi � yi)2;then HT = n3 (B �A)2if P is uniform.Similarly, let G0 = fA; : : : ; Bgn. If D2 is the L1 norm thenn(B �A)(B �A+ 2)3(B �A+ 1)If D2 is the squared L2 norm thenn(B �A)(B �A+ 2)6The generalized F statistic assumes values less than or equal to one. The Fstatistic is zero if the distance between the chromosomes is equal to HT



Appendix BAnalytic Gradients for the 2DConformation ProblemThis appendix describes the equations used to analytically calculate thederivative for the simple conformation problem consider by Judson et al. [49].f(�) =Xi<j 24� r�rij!12 � 2� r�rij!635where rij is the interatom distancerij = q(xi � xj)2 + (yi � yj)2:The angles � are used to calculate the coordinates x and y. Note that the anglesbegin with �1, but we add �0 = 0. Let�k = kXi=1 �ithen (x0; y0) = (0; 0), and xi = i�1Xk=0 cos(�k)yi = i�1Xk=0 sin(�k)We use the chain rule to calculate @f@�m .@f@rij = �12�Xi<j " (r�)12r13ij !�  (r�)6r7ij !# @rij@�m125



@rij@�m = 1rij "(xi � xj)@(xi � xj)@�m + (yi � yj)@(yi � yj)@�m #Assuming that j > i, we have@(xi � xj)@�m = � j�1Xk=i @@�m cos(�m) = j�1Xk=max(i;m) sin(�k)@(yi � yj)@�m = � j�1Xk=i @@�m sin(�k) = � j�1Xk=max(i;m) cos(�k)Now we can rede�ne @rij@�m ,@rij@�m = 1rij 24(xi � xj)( j�1Xk=max(i;m) sin(�k)) + (yi � yj)(� j�1Xk=max(i;m) cos(�k))35and observe that this is zero when m � i. Assuming that m > i, note that� j�1Xk=m cos(�k) = (xm � xj)j�1Xk=m sin(�k) = �(ym � yj)Thus @rij@�m = 1rij [(xi � xj)(yj � ym) + (yi � yj)(xm � xj)]Combining terms, we get@f@�m = �12�m�1Xi=0 nXj=m+1 " (r�)12r14ij !�  (r�)6r8ij !# [(xi � xj)(yj � ym) + (yi � yj)(xm � xj)]
126



Bibliography[1] David H. Ackley. A Connectionist Machine for Genetic Hillclimbing. KluwerAcademic Publishers, 1987.[2] David H. Ackley. A case for Lamarackian evolution. In To appear in Proceedingsof the Third Conf. on Arti�cial Life, 1993.[3] David H. Ackley and Michael L. Littman. A video presentation of \learning fromnatural selection in an arti�cial environment". In Chris G. Langton, CharlesTaylor, J. Doyne Farmer, and Steen Rasmussen, editors, Video Proceedings ofthe Second Conference on Arti�cial Life, pages 487{509. Addison-Wesley, 1990.[4] Thomas B�ack and Frank Ho�meister. Extended selection mechanisms in geneticalgorithms. In Richard K. Belew and Lashon B. Booker, editors, Proceedings ofthe Fourth Intl. Conf. on Genetic Algorithms, pages 92{99. Morgan-Kaufmann,1991.[5] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwefel. A survey of evolu-tion strategies. In Richard K. Belew and Lashon B. Booker, editors, Proceedingsof the Fourth Intl. Conf. on Genetic Algorithms, pages 2{9. Morgan-Kaufmann,1991.[6] Richard K. Belew. Evolution, learning, and culture: Computational metaphorsfor adaptive algorithms. Complex Systems, 4(1):11{49, 1990.[7] Richard K. Belew, John McInerny, and Nicol N. Schraudolph. Evolving net-works: Using the genetic algorithm with connectionist learning. In Chris G.Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Pro-ceedings of the Second Conference on Arti�cial Life, pages 511{548. Addison-Wesley, 1991.[8] C.G.E. Boender and A.H.G. Rinnooy Kan. Bayesian stopping rules for multi-start global optimization methods. Mathematical Programming, 37:59{80, 1987.[9] Heinrich Braun. On solving the travelling salesman problems by genetic algo-rithms. In Hans-Paul Schwefel and Reinhard M�anner, editors, Parallel ProblemSolving from Nature, pages 129{133. Springer-Verlag, 1990.127



128[10] Matthew Clark, Richard D. Cramer, III, and Nicole Van Opdenbosch. Vali-dation of the general purpose Tripos 5.2 force �eld. Journal of ComputationalChemistry, 10(8):982{1012, 1989.[11] N.E. Collins, R.W. Eglese, and B.L. Golden. Simulated annealing - an annotatedbibliography. American Journal of Mathematics and Management Sciences, 8(3& 4):209{307, 1988.[12] Robert J. Collins and David R. Je�erson. Selection in massively parallel ge-netic algorithms. In Proceedings of the 4th International Conference on GeneticAlgorithms, pages 249{256, 1991.[13] J.S. Cramer. The Logit Model: An introduction for economists. Edward Arnold,1991.[14] Yuval Davidor, Takeshi Yamada, and Ryohei Nakano. The ECOlogical frame-work II: Improving GA performance at virtually zero cost. In Stephanie Forrest,editor, Proceedings of the Fifth Intl. Conf. on Genetic Algorithms, pages 171{176. Morgan-Kaufmann, 1993.[15] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,1991.[16] Kenneth A. De Jong. An analysis of the behavior of a class of genetic adaptivesystems. PhD thesis, University of Michigan, Ann Arbor, 1975.[17] C.C.Y. Dorea. Limiting distribution for random optimization methods. SIAMJournal of Control and Optimization, 24(1):76{82, 1986.[18] C.C.Y. Dorea. Stopping rules for a random optimizationmethod. SIAM Journalof Control and Optimization, 28(4):841{850, 1990.[19] Richard O. Duda and Peter E. Hart. Pattern Classi�cation and Scene Analysis.John Wiley and Sons, 1973.[20] I. Fiodorova. Search for the global optimum of multiextremal problems. InOptimal Decision Theory 4, pages 93{100, Lithuanian SSR Acad. of Sci., 1978.Inst. of Math. and Cybern.[21] Christodoulos A. Floudas and Panos M. Pardalos. A Collection of Test Problemsfor Constrained Global Optimization Algorithms, volume 455 of Lecture Notesin Computer Science. Springer-Verlag, 1990.[22] David R. Fogel. An introduction to simulated evolutionary optimization. IEEETransactions on Neural Networks, 5(1):3{14, 1994.[23] Stephanie Forrest and Melanie Mitchell. The performance of genetic algorithmson Walsh polynomials: Some anomalous results and their explanations. InProceedings of the 4th conference on Genetic Algorithms, June 1991.



129[24] Michael R. Garey and David S. Johnson. Computers and Intractability - Aguide to the theory of NP-completeness. W.H. Freeman and Co., 1979.[25] John Gill. Computational complexity of probabilistic Turing machines. SIAMJournal of Computation, 6(4):675{695, 1977.[26] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical optimization.Academic Press, 1981.[27] David Goldberg. The theory of virtual alphabets. In Hans-Paul Schwefel andReinhard M�anner, editors, Parallel Problem Solving from Nature, pages 13{22.Springer-Verlag, 1990.[28] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selectionschemes used in genetic algorithms. In Gregory J.E. Rawlins, editor, Founda-tions of Genetic Algorithms, pages 301{315. Morgan-Kau�mann, 1991.[29] David E. Goldberg and J. Richardson. Genetic algorithms with sharing formultimodal function optimization. In Genetic algorithms and their applica-tions: Proceedings of the Second International Conference on Genetic Algo-rithms, pages 41{49, 1987.[30] D.E. Goldberg. Genetic algorithms and Walsh functions: Part I, a gentle in-troduction. Complex Systems, 3:129{152, 1989.[31] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and MachineLearning. Addison-Wesley Publishing Co., Inc., 1989.[32] S. Gomez and A. V. Levy. The tunneling method for solving the constrainedglobal optimization problem with several non-connected feasible regions, pages34{47. Lecture Notes in Mathematics. Springer-Verlag, 1982.[33] P. J. Goodford. A computational procedure for determining energetically favor-able binding sites on biologically important molecules. J. Med. Chem., 28:849{857, 1985.[34] David S. Goodsell and Arthur J. Olson. Automated docking of substrates toprotiens by simulated annealing. Protiens: Structure, Function and Genetics,8:195{202, 1990.[35] V. Scott Gordon and Darrell Whitley. Serial and parallel genetic algorithms asfunction optimizers. In Stephanie Forrest, editor, Proceedings of the Fifth Intl.Conf. on Genetic Algorithms, pages 177{183. Morgan-Kaufmann, 1993.[36] William E. Hart and Richard K. Belew. Optimizing an arbitrary function ishard for the genetic algorithm. In Proceedings of the 4th conference on GeneticAlgorithms, pages 190{195, June 1991.



130[37] William E. Hart and Richard K. Belew. Optimization with genetic algorithmhybrids that use local search. In Plastic Individuals in Evolving Populations,1994. (to appear).[38] Daniel L. Hartl. A primer on population genetics. Sinauer Associates, 1981.[39] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theoryof Neural Computation. Lecture Notes Volume 1, Sante Fe Institute, Studies inthe Sciences of Complexity. Addison-Wesley, 1991.[40] Geo�rey E. Hinton and Steven J. Nowlan. How learning can guide evolution.Complex Systems, 1:495{502, 1987.[41] Frank Ho�meister and Thomas B�ack. Genetic algorithms and evolutionarystrategies: Similarities and di�erences. In Hans-Paul Schwefel and Rein-hard M�anner, editors, Parallel Problem Solving from Nature, pages 455{469.Springer-Verlag, 1990.[42] John H. Holland. Adaptation in Natural and Arti�cial Systems. The Universityof Michigan Press, 1976.[43] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,Languages, and Computation. Addison-Wesley Pub. Co., 1979.[44] Lester Ingber. Very fast simulated re-annealing. Mathematical and ComputerModelling, 12(8):967{973, 1989.[45] Lester Ingber and Bruce Rosen. Genetic algorithms and very fast simulatedreannealing - a comparison. Mathematical and Computer Modelling, 16(11):87{100, 1992.[46] Cezary Z. Janikow and Zbigniew Michalewicz. An experimental comparison ofbinary and 
oating point representations in genetic algorithms. In Richard K.Belew and Lashon B. Booker, editors, Proceedings of the Fourth Intl. Conf. onGenetic Algorithms, pages 31{36. Morgan-Kaufmann, 1991.[47] David S. Johnson. Local optimization and the traveling salesman problem.In M.S. Paterson, editor, Automata, Languages and Programming - 17th In-ternational Colloquium, pages 446{461, New York, July 1990. Springer-Verlag.Volume #443.[48] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. Howeasy is local search? Journal of computer and system sciences, 37(1):79{100,Aug 1988.[49] R.S. Judson, M.E. Colvin, J.C. Meza, A. Hu�er, and D. Gutierrez. Do intelligentcon�guration search techniques outperform random search for large molecules?International Journal of Quantum Chemistry, pages 277{290, 1992.



131[50] Ron Keesing and David G. Stork. Evolution and learning in neural networks:The number and distribution of learning trials a�ect the rate of evolution. InRichard P. Lippmann, John E. Moody, and David S. Touretzky, editors, NIPS3, pages 804{810. Morgan Kaufmann, 1991.[51] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimization by simulatedannealing. Science, 220:671{680, 1983.[52] Scott R. Kohn and Scott B. Baden. A robust parallel programming modelfor dynamic non-uniform scienti�c computations. In Proceedings of the 1994Scalable High Performance Computing Conference, May 1994.[53] Clyde P. Kruskal and Alan Weiss. Allocating independent subtasks on parallelprocessors. In ICCP 1984, pages 236{240, 1984. Extended Abstract.[54] Scott M. Le Grand and Kenneth M. Merz, Jr. The application of the geneticalgorithm to the minimization of potential energy functions. Journal of GlobalOptimization, 3:49{66, 1993.[55] R.S. Maier, J.B. Rosen, and G.L. Xue. A discrete-continuous algorithm formolecular energy minimization. Unpublished manuscript, Mar 1992.[56] John M.N. McInerny. Biologically In
uenced Algorithms and Parallelism inNon-Linear Optimization. PhD thesis, University of California, San Diego,1992.[57] Zbigniew Michalewicz. Genetic algorithms + data structures = evolution pro-grams. Springer-Verlag, 1992.[58] Melanie Mitchell, Stephani Forrest, and John H. Holland. The royal road forgenetic algorithms: Fitness landscapes and GA performance. In Toward apractice of autonomous systems. Proceedings of the First European Conferenceon Arti�cial Life, pages 245{54. MIT Press, 1992.[59] David J. Montana and Lawrence Davis. Training feedforward neural networksusing genetic algorithms. In IJCAI 1989, pages 762{767, 1989.[60] H. M�uhlenbein, M. Gorges-Schleuter, and O. Kr�amer. Evolution algorithms incombinatorial optimization. Parallel Computing, 7:65{85, 1988.[61] H. M�uhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithmas function optimizer. In Richard K. Belew and Lashon B. Booker, editors,Proceedings of the Fourth Intl. Conf. on Genetic Algorithms, pages 271{278.Morgan-Kaufmann, 1991.[62] H. M�uhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm asfunction optimizer. Parallel Computing, 17:619{632, 1991.



132[63] Heinz M�uhlenbein. Evolution in time and space - the parallel genetic algorithm.In Gregory J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 316{337. Morgan-Kau�mann, 1991.[64] Peter Neuhaus. Solving the mapping-problem - experiences with a genetic algo-rithm. In Hans-Paul Schwefel and Reinhard M�anner, editors, Parallel ProblemSolving from Nature, pages 170{175. Springer-Verlag, 1990.[65] Harald Niederreiter. A quasi-Monte Carlo method for the approximate com-putation of the extreme values of a function. In Paul Erd�os, editor, Studies inPure Mathematics, pages 523{529. Birkh�auser Verlag, 1983.[66] Harald Niederreiter. Quasi-Monte Carlo methods for global optimization. InW. Grossmann, G. P
ug, I. Vincze, and W. Wertz, editors, Proceedings of the4th Pannonian Symposium on Mathematical Statistics, pages 251{267. BadTatzmannsdorf, Austria, 1983.[67] Harald Niederreiter and Paul Peart. Localization of search in quasi-Monte Carlomethods for global optimization. SIAM Journal of Scienti�c and StatisticalComputing, 7(2):660{664, April 1986.[68] Stefano Nol�, Je�rey L. Elman, and Domenico Parisi. Learning and evolution inneural networks. Technical Report CRL 9019, Center for Research in Language,University of California, San Diego, July 1990.[69] M. A. Nowak and R. M. May. The spatial dilemas of evolution. Intl. Journal ofBifurcation and Chaos in Applied Sciences and Engineering, 3(1):35{78, 1993.[70] Arthur J. Olson, David S. Goodsell, Garrett M. Morris, and Ruth Huey.Autodock User Guide. Scripps Research Institute, Department of MolecularBiology, 1994.[71] Christos H. Papadimitriou, Alejandro A. Sch�a�er, and Mihalis Yannakakis. Onthe complexity of local search. In Proceedings of the Twenty Second AnnualACM Symposium on Theory of Computing, pages 438{45, 1990.[72] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization- Algorithms and Complexity. Prentice Hall, Inc., 1982.[73] A.T. Phillips and J.B. Rosen. A computation comparison of two methods forconstrained global optimization. Unpublished manuscript, 1992.[74] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-terling. Numerical Recipies in C - The Art of Scienti�c Computing. CambridgeUniversity Press, 1990.[75] L. A. Rastrigin. Systems of extremal control. Nauka, 1974.



133[76] A.H.G. Rinnooy Kan, C.G.E. Boender, and G.Th. Timmer. A stochastic ap-proach to global optimization. In K. Schittkowski, editor, Computational Math-ematical Programming. NATO ASI Series, Bol. F15, 1985.[77] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization meth-ods - part I: Clustering methods. Mathematical Programming, 39:27{56, 1987.[78] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization meth-ods - part II: Multi level methods. Mathematical Programming, 39:57{78, 1987.[79] G�unter Rudolph. Convergence analysis of canonical genetic algorithms. IEEETransactions on Neural Networks, 5(1):96{101, 1994.[80] David E. Rumelhart, Geo�rey E. Hinton, and James L. McClelland. A gen-eral framework for parallel distributed processing. In David E. Rumelhart andJames L. McClelland, editors, Parallel Distributed Processing, volume 1, pages45{76. MIT Press, 1986.[81] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learn-ing internal representations by error propagation. In David E. Rumelhart andJames L. McClelland, editors, Parallel Distributed Processing, volume 1, pages318{362. MIT Press, 1986.[82] J. David Scha�er, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das. Astudy of control parameters a�ecting online performance of genetic algorithmsfor function optimization. In J. David Scha�er, editor, Proceedings of the ThirdIntl. Conf. on Genetic Algorithms, pages 51{60. Morgan-Kaufmann, 1989.[83] Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding forgenetic algorithms. Machine Learning, 9:9{21, 1992.[84] F.J. Solis and R.J-B. Wets. Minimization by random search techniques. Math-ematical Operations Research, 6:19{30, 1981.[85] William M. Spears and Kenneth A. De Jong. An analysis of multi-pointcrossover. In Gregory J.E. Rawlins, editor, Foundations of Genetic Algorithms,pages 301{315. Morgan-Kau�mann, 1991.[86] William M. Spears and Kenneth A. De Jong. On the virtues of parametrizeduniform crossover. In Richard K. Belew and Lashon B. Booker, editors, Proceed-ings of the Fourth Intl. Conf. on Genetic Algorithms, pages 230{236. Morgan-Kaufmann, 1991.[87] Piet Spiessens and Bernard Manderick. A massively parallel genetic algorithm:Implementation and �rst analysis. In Proceedings of the 4th International Con-ference on Genetic Algorithms, pages 279{285, 1991.



134[88] N. J. Stedmann, G. M. Morris, and P. J. Atkinson. Bibliography of theoreticalcalculations in molecular pharmacology. J. Mol. Graphics, 5:211{222, 1987.[89] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings ofthe Third International Conference on Genetic Algorithms, pages 2{9, 1989.[90] Larry E. Toothaker. Multiple Comparisons for Researchers. Sages Publications,1991.[91] Aimo T�orn and Antanas �Zilinskas. Global Optimization, volume 350 of LectureNotes in Computer Science. Springer-Verlag, 1989.[92] Craig A. Tovey. Hill climbing with multiple local optima. SIAM Journal ofAlgorithms and Discrete Mathematics, 6(3):384{393, 1985.[93] Craig A. Tovey. Low order polynomial bounds on the expected performance oflocal imporvement algorithms. Mathematical Programming, 35:193{224, 1986.[94] J. F. Traub, G. W. Wasilkowski, and H. Wo�zniakowski. Information-BasedComplexity. Academic Press, Inc., 1988.[95] Nico L.J. Ulder, Emile H.L. Aarts, Hans-J�urgen Bandelt, Peter J.M. vanLaarhoven, and Erwin Pesch. Genetic local search algorithms for the travel-ing salesman problem. In Hans-Paul Schwefel and Reinhard M�anner, editors,Parallel Problem Solving from Nature, pages 109{116. Springer-Verlag, 1990.[96] Gregor von Laszewski. Intelligent structural operators for the k-way graph par-titioning problem. In Richard K. Belew and Lashon B. Booker, editors, Pro-ceedings of the Fourth Intl. Conf. on Genetic Algorithms, pages 45{52. Morgan-Kaufmann, 1991.[97] Michael D. Vose and Gunar E. Liepens. Schema disruption. In Richard K.Belew and Lashon B. Booker, editors, Proceedings of the Fourth Intl. Conf. onGenetic Algorithms, pages 237{242. Morgan-Kaufmann, 1991.[98] E.D. Weinberger. Fourier and Taylor serics on �tness landscapes. BiologicalCybernetics, 65:321{330, 1991.[99] Halbert White. Learning in arti�cial neural networks: A statistical perspective.Neural Computation, 1(4):425{464, 1989.[100] D. Whitley, K. Mathias, and P. Fitzhorn. Delta coding: An iterative searchstrategy for genetic algorithms. In Richard K. Belew and Lashon B. Booker,editors, Proceedings of the Fourth Intl. Conf. on Genetic Algorithms, pages 77{84. Morgan-Kaufmann, 1991.[101] Darrell Whitley. Cellular genetic algorithms. In Stephanie Forrest, editor,Proceedings of the Fifth Intl. Conf. on Genetic Algorithms, page 658. Morgan-Kaufmann, 1993.



135[102] Darrell Whitley, Stephen Dominic, and Rajarshi Das. Genetic reinforcementlearning with multilayer neural networks. In Richard K. Belew and Lashon B.Booker, editors, Proceedings of the Fourth Intl. Conf. on Genetic Algorithms,pages 562{569. Morgan-Kaufmann, 1991.[103] Alden H. Wright. Genetic algorithms for real parameter optimization. In Gre-gory J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 205{218.Morgan-Kau�mann, 1991.


