
Computer Science and Engineering CSE292:New Age AlgorithmsUniversity of California at San Diego Spring 94Genetic Algorithms and the Traveling SalesmanProblemKaran Bhatia1 IntroductionGenetic algorithms are a class of algorithms that mimic biological evolution and naturalselection to \evolve" solutions that are robust and \�t". Their popularity is in part dueto their perceived notion that the GA is problem independent: although the meaning ofthe string of bits may change, the algorithm to manipulate them does not. So by simplytransforming the problem from the natural solution space (the phenotype) to the bit-stringrepresentation (the genotype), and applying a standard GA, good solutions will naturallyevolve given enough time.If this is the case, it seems only natural to use GA's to solve hard combinatorial optimizationproblems and, in particular, the Traveling Salesman Problem. This problem asks: given thata salesman wishes to visit N cities with the constraint that every city gets visited and no citygets visited twice, what is the minimum length tour he must take? Although this problemis conceptually easy to understand, it turns out it is very di�cult to solve. With N cities,there are N ! number of tours the salesman can take, so doing a brute force calculation forthe optimal tour quickly exceeds the computing resources of today as N increases.The TSP problem seems ideally suited for the GA: it has a large solution space, no knownpolynomial solution, and a speci�c and easily calculated �tness function. However, after morethen a decade of research, GAs still produces results that are far worse than conventionalheuristics. The reason is that for the TSP, the constraints of the problem make it di�cultto generate a representation of the genome for which the building block hypothesis holds: thestandard mutation and crossover operators do not work well because the result child genomerarely produces a valid tour. Work in the last 10 years has been focused on developing newrepresentations and new operators that produce valid tours and that build on the previousgenerations.Section 2 of this paper reviews the history of the TSP and the standard heuristic algorithmsused. Section 3 surveys the attempts using GA's for the TSP in the past decade. Section4 and 5 discuss some experiments done with hybrid GAs: genetic algorithms that use localsearch at each generation. The results seem to indicate that while GA's in general have had1

Genetic Algorithms and the Traveling Salesman Problem 2little success, GA/LS hybrids do surprisingly well, competing with the best known heuristics.Section 6 concludes with some �nal thoughts.2 The Traveling Salesman ProblemThe Traveling Salesman Problem is perhaps the oldest and best studied problems in an areacalled combinatorial optimization. It's history can be traced as far back as Euler [1759]and Hamilton [1856] who studied similar problems. But it wasn't until the 1930's that theproblem got its name. At the time, researchers were studying many di�erent optimizationproblems like the assignment problem and the transportation problem which looked verymuch like the TSP. But by the 1960's it was clear that the TSP was inherently more di�cult.Then in the early 70's, this concept of di�culty was formalized by Cook with the introductionof the theory of NP-Completeness. Any problem in this class was as di�cult as any in NP(Non-deterministic Polynomial). If NP = P , then these NP-Complete problems did have ane�cient solution, however no one has proved that this is the case. Furthermore, It is widelybelieved that NP 6= P , and the only solutions for NP-Complete problems (including TSP)are exponential-time ones.But TSP is not only very hard, it is also very useful in areas like VLSI layout, X-raycrystallography, or job scheduling. Although optimal solutions are hard, many people havedeveloped heuristics that �nd \good" sub-optimal tours. One of the reasons that TSP isan important problem is that it has provided a testing ground for new algorithmic methodssuch as dynamic programming, branch and bound, and more recently simulated annealingand genetic algorithms. If a new method works well on the TSP, the chances are good thatthat same method will work in many other problems.However, even �nding good heuristics for the TSP is not easy. Sahni & Gonzalez [1976] [1]showed that for the symmetric TSP, if a polynomial time heuristic H had a worst case upperbound, then P = NP . So �nding a good general heuristic is as hard as �nding the solution.Another popular method for �nding solutions is local search: simply start at a randomsolution, and if a \neighbor" of that solution (as de�ned by a neighborhood function) hasbetter �tness, then replace the current solution with this neighbor, and repeat. This type ofalgorithm is commonly called \Hill Climbing" due to the fact that it always moves up the�tness landscape until a local optimal (a hill) is reached. Papadimitriou & Steiglitz [1977] [1]showed that using a local search procedure cannot produce tours whose length is boundedby a multiple of the optimal tour length.There seems to be little hope for the general TSP. If, however, we add an additional constraintthen we can show stronger results. This extra constraint is the triangle inequality: givenany three cities, x; y; z, it must be the case thatd(x; z) � d(x; y) + d(y; z)

Genetic Algorithms and the Traveling Salesman Problem 3For most of the versions of TSP encountered in practice, this is a reasonable constraint.Given this constraint, many heuristics have been developed which provide various degreesof performance.2.1 Constructive HeuristicsThe Nearest Neighbor Algorithm is perhaps the simplest and most intuitive heuristic for theeuclidian TSP. It operates as follows: pick any starting city c0, and repeatedly pick the ithcity such that ci is the closest unvisited city to ci�1. It is clear that it will produce a validtour, but Rosenkrantz, Stearns & Lewis [1977] showed that the quality of the tour does nothave an upper bound. In other words, one can construct a TSP instance such that thisprocedure is arbitrarily bad. The triangle inequality does, however, limit the growth rate toO(logn).A better result can be shown for the Minimum Spanning Tree algorithm. This algorithmuses standard polynomial-time algorithms to �nd the minimum spanning tree (which can befound in O(N2)). A lower bound on the optimal tour can be determined by observing thatthe optimal tour with any edge removed is a spanning tree. ThereforeOPT (t) > MST (t)Observe that a depth-�rst traversal of the tree produces a tour of length at most twice theMST (t). This, combined with the lower bound, gives an upper bound on the optimal tourconstructed this way, DFMST (t) � 2OPT (t)where DFMST is the tour obtained by the depth-�rst traversal.Christo�des' algorithm provides an even better worst case guarantee: C(t) < 32OPT (t) whereC(t) is the tour produced by� construct a minimum spanning tree T� construct a minimum matching M� for the set of all odd-degree vertices� �nd a eulerian tour for the graph G = T [M�.� convert the eulerian tour into a TSP tour using \shortcuts"For a complete description of the above algorithms and their performance see [1].

Genetic Algorithms and the Traveling Salesman Problem 42.2 Local Improvement HeuristicsA di�erent approach to �nd good tours is to start with any tour and try to iteratively improveit by making small changes. This method is called \local search" because it does not try to�nd the global optimal; rather it only considers tours that are the \neighbor" of the currenttour, and if some neighbor exists that is \better" than the current tour, the current tour isset to this neighbor, and the process is repeated until there are no better neighbors. At thispoint, the tour is said to be \locally optimal."Di�erent local search algorithms have di�ering concepts of \neighbor," ranging from simple(2OPT) to very complex (Lin-Kernighan). But all these methods are very di�cult to provebound on because the number of iterations of local search is highly dependent on the initialposition.2.2.1 2-OptThe most simplest of the local search procedures is called \2OPT." 2OPT starts with arandomly generated tour and then removes two random edges, reconnecting them so theycross. This procedure is repeated until a local optimal is found. This is called one \run."Usually many di�erent runs, starting from di�erent randomly generated tours, are performedand the best tour ever seen returned.3OPT is an extension of 2OPT in which three edges are replaced with three new edges suchthat the tour is still valid. Experimental results [3] show that 3OPT �nds much better toursthan 2OPT. Both these heuristics work surprisingly well considering their simplicity.2.2.2 Lin-KernighanThe Lin-Kernighan heuristic extends 3OPT even more: instead of having kOPT for some�xed k, Lin and Kernighan developed a variable kOPT strategy. Given a tour t0, a neighboris generated by �rst doing a 2OPT generating t1 and evaluating the tour. If this is betterthan the original, tbest is set to t1. Then if ti can be modi�ed such that another edge can bereplaced so the total cost is less than ti, replace that edge and call the tour ti+1. If ti+1 isbetter than tbest, reset tbest. Continue this process until edges can not be found to replaceone in the tour. Then return tbest.This process just returns the neighbor of the current tour. As with the other local searchalgorithms, if this is better than the current, set the current to this neighbor and repeatuntil a local optimal is found. Then repeat for multiple runs.There are many details left out of the description above for the sake of readability. Theactual implementation details can be found in [2]. Currently the best algorithms availablefor the TSP use some variation of the Lin-Kernighan heuristic. They perform very well for

Genetic Algorithms and the Traveling Salesman Problem 5practical TSP instances, performing about 2-3% above optimal for large instances. For acomplete performance analysis of the heuristics see [3].3 Genetic Algorithms for the TSPSo far, we have seen examples of two di�erent optimization methods: what Goldberg callsrandom (hill climbing) and specialized (nearest neighbor, DFMST)[4]. There is anotherstandard technique, enumeration, which for the TSP, could be brute force, dynamic pro-gramming, etc.The problemGoldberg cites with these methods are that enumeration and random techniquesperform over a large problem space, but perform uniformly badly. Specialized techniquesperform much better, but only for a small class of problems. What is really needed is a\robust" scheme that works across a wide range of problems and works uniformly well.Enter the Genetic Algorithm: search algorithms based on the mechanics of natural selectionand biological genetics. It was observed that biological organisms are continually adaptingto their environment, getting better and better at surviving over the generations. In termsof optimization theory, the individuals are \optimizing" to their environment. And thismethod is robust, it works from the deserts of the Sahara, to the mountains in Tibet.Genetic Algorithms are di�erent that the other techniques: GA's work with a population ofindividuals, and although a speci�c individual in the population might be un�t, as a whole,the population becomes �tter. Another di�erence is that GA's work with an encoding ofthe solutions, rather than the solutions themselves: just like the phenotype of biologicalorganisms is encoded in the DNA as the genotype. The genetic operators then operate onthis encoding.GAs work as follows: An initial (random) sampling of solutions is chosen to initialize thepopulation. A process of selection is carried out, where only the most �t of the populationsurvive. The genes of these �t individuals are combined through crossover, and mutatedto form the next generation. The gene is usually implemented as a bitstring. Crossover isdone by selecting a random point on the genomes of the parents, and swapping the subsets.Mutation is a random bit
ip. The Schema Theorem also know as The Fundamental Theoremof Genetic Algorithms shows that for the above situation, above average solutions genes willbe represented in exponentially increasing numbers.For the TSP, if we use the most natural representation, an ordered list of cities, notice thatthe standard operators of crossover and mutation do not always produce valid tours. Onemight respond \so, biological organisms do not always produce valid children." But this isvery rare: in fact, most of the time, they do. For TSP, the number of possible solutions isNN , however, the number of valid tours is N !. This means that the valid tours are a smallsubset of all possible solutions. If a GA is to work reasonably well it must weed out all

Genetic Algorithms and the Traveling Salesman Problem 6those invalid tours. This leads to the problem of representation: How does one representthe solution on its genome, such that the genetic operators use information in the parents'genes to produce \better" children with high probability? This has been the focus in GAresearch with respect to the TSP.3.1 Goldberg and the PMX OperatorDavid Goldberg proposed the \Partially-Mapped Crossover" operator [5]: given two parenttours, sayA = 9 8 4 5 6 7 1 3 2 10B = 8 7 1 2 3 10 9 5 4 6the child tours are produce by picking two random numbers and swapping the cities withinthe bounds. Some clean up is then required because it might be the case that the child hasduplicate cities. If a city is represented twice in the child (one originally, and one from theswapped substring), simply replace the �rst occurrence with a city that got swapped away.For example if the two random numbers are 4 and 6, the substrings to swap are \5 6 7" fromA, and \2 3 10" from B, resulting in one child:Child1 = 8 7 1 | 5 6 7 | 9 5 4 6Now swap the other 5 with the 2, the 6 with a 3, and the 7 with 10 to getChild1 = 8 10 1 | 5 6 7 | 9 2 4 3which is a valid tour.The crossing over of parents does produce children that are, in some sense, similar to theirparents, but the swaping at the end introduces lots of randomness. Ideally, we would beable to take the \best" from one parent and combine it with the \best" of the other parent.\Best" for the TSP means subtours that are optimal. However, with PMX, the larger theoptimal subtour, the more likely it will be broken up.Their results described in [5] are inconclusive at best. They only give results of two di�erentruns for a 10-city TSP instance. Their method does give good results, but with a ratherlarge population size of 200.3.2 GrefenstetteGrefenstette et al present a number of various representations and their results on them [9].The �rst is Ordinal Representation, in which a tour is described by a list of N integers in

Genetic Algorithms and the Traveling Salesman Problem 7which the ith element can range from 1 to (N�i+1). So, for example, the path (a c e d b)corresponds to the ordinal representation (1 2 3 2 1).The advantage of this representation is that standard (2-point) crossover can be used andwill create valid tours. However, the child might be arbitrarily random, depending on thecrossover points. The relationship to the parents is missing. Experimental results by Grefen-stette show that in most cases, ordinal representation does no better than random search onTSP.Another representation is Adjacency Representation: there is an edge in the tour t if andonly if the allele in position i is j. For example the representation (1 3 5 4 2) correspondsto the tour (3 1 5 2 4). Crossover for this representation is done by either alternatingedges or by subtour chunking.This, I believe, is moving in the right direction: ideally, if we knew which subtours of eachparent were a part of the optimal tour, then we could form children such that both thesubtours of each parent are present. This is important for the building block hypothesiswhich states that GA's try to \build" on the �tness of each parent. Alternating edges,however, are too �ne building blocks: any optimal subtour will have a high probability ofbeing broken. Mixing subtours should perform better. Grefenstette's results show alternatingedges perform uniformly bad, as expected, but also that subtour mixing performed badly.Their hyperplane analysis showed that \there is generally no signi�cant di�erence betweenthe mean relative performance of any two competing �rst order hyperplanes." Which meansthat for this scheme, better individuals don't dominate the populations.3.3 Whitley and Edge RecombinationWhitley's representation [8] builds on the adjacency representation of the last section. Theybelieve that since the edges are the important component of TSP, that they should beencoded on the genome instead of the ordering of the cities. In addition, they developed acrossover operator called Edge Mapped Crossover which they claim transfers 95-99% of theedges from the parents to the child. The reason that this is desired is that the children ofthe parents should have some common traits of each parent, be them good or bad. If theyare bad, the selection algorithm will weed them out. But if they are good, then the thosegenes are spread to the next generation.Their crossover operates as follows: consider to tours (a b c d e f) and (b d c a e f).If we \place" both tours on the map together, we will �nd that each city has between 2 and4 edges adjacent to it. It has 2 if both tours go through the city in the same way, and 4 ifthey go through in completely di�erent ways. So the edge map looks like:a : b f c eb : a c d f

Genetic Algorithms and the Traveling Salesman Problem 8c : b d ad : c e be : d f af : a e bTo create the child, start at any node, say b. Now the possible choices are a; c; d; f . Noticethat c; d; f all have only 2 edges (after removing the b), while a has 3 edges. So pick a citywith the minimum amount of edges, and continue. So (b c d e a f) is a child.The rational for this method is that those subtours that are shared between the parents willhave a high probability of being transfered to the parent. The disadvantage of this methodis that it is still randomly choosing between an edge of each parent, breaking up largersubtours. Although it might work better than other GA methods, it still does far worse thanlocal search heuristics, even 2OPT. In the next section I describe some experiments wherethis method was compared with local search heuristics.

Genetic Algorithms and the Traveling Salesman Problem 94 Experimental SetupThese experiments compared the performance of the Lin-Kerighan heuristic, 2OPT and theGA using edge recombination as described in [8]. Each was coded in standard C and runon Sun Sparcstations. The TSP instances were obtained form the TSPLIB instance packageavailable over the network.The GA used a simple selection and breeding mechanism: of the individuals in the populationat generation t, selection for t+ 1 was done by eliminating the bottom (1 � s)%. Crossoverwas used to generate enough new individuals to �ll the population. Selection of the parentswas done at random with uniform distribution. And mutation was not introduced.2OPT and LK were implemented as described in [2] and [1]. It should be noted that thisimplementation of the Lin-Kernighan did not include re�nements as proposed in [2] such aslookahead, or reduction.Fitness was computed as the sum of the squares of the distances of the cities in the tour. Thiswas done in order to eliminate any roundo� errors that might accumulate from the squareroot function. The percent o� of optimal will, however, be di�erent that that reported inthe literature. But since only relative performance is being judged, this is acceptable.The goal was twofold: �rst, to determine how a \good" GA compares with other heuris-tics, and second, to see the e�ect of combining local search and the GA. Performance wasmeasured in number of tour evaluations. Although this is not as accurate as CPU time, itabstracts away the di�erences in implementation.4.1 GA vs. 2OPT vs. LKThe �rst experiment was run to gauge the relative performance of the GA, 2OPT and theLK heuristic (see Figure 1). Data was collected for the 48-city symmetric euclidean instance,with multiple runs each with di�erent random seeds.The GA was run with selection criteria s = :7, so the top 70% of the individuals from eachgeneration would breed and continue. For each method, a maximum number of evaluationswas allowed, after which the method would return its best tour found.I �rst tested the GA on a 10 city instance, and found that given a population of around 200and 200-300 generations, the GA does consistently �nd the optimal city. I then moved to a48 city instance, where I tested all three methods.As can be seen from Figure 1, the GA provides little competition for either the LK heuristicor 2OPT. As the number of evaluations is allowed to increase, the GA does do better andbetter. But on average, performance is still poor.One explanation is that GAs do better when the number of generations and population size

Genetic Algorithms and the Traveling Salesman Problem 10is larger. In these graphs, I considered the low range in the number of evaluations. In theexperiments by Whitley, a 50 city instance took a population of 600 and around 25,000evaluations before their results came close to optimal. In larger TSP instances, it might bethe case that GA's do better as compared with the pure local search heuristics.4.2 GALK vs. LKFor the next experiment, I modi�ed the GA to use the LK heuristic at each generation tooptimize each individual in the population with local search. Local search was performeduntil the tour was locally optimal. Recombination then occured with the locally optimalparents { Lamarkian Evolution. The results are shown in Figure 2 for the same 48 cityinstance. The results show that GA with LK local search is much more competitive, and, infact, consistently outperforms the random multistart LK.If the GA did nothing at all interesting, recombining two parent tours and produced randomchild tours, we would expect that the GA with LK would do no worse than LK. But sinceit is doing better, it implies that the recombination operator is doing something interesting.Edge recombination attempts to save all edges that are common to the parents. So for apopulation of locally optimal tours, if there are some common optimal subtours, it is likelythat they will be passed to the next generation. All other edges will essentially be shu�ed.This is enough randomization to move the child tour far enough away from the parents sothe local search can �nd di�erent local optimal.This idea is not new. Lin and Kernighan in [2] mentioned a optimization technique thatworked very well for them. They called this method \reduction", and it worked as follows:after �nding some number of locally optimal tours with random multistart LK, the initialtours would be limited to those containing the common edges of the previous tours. So theirmethod is really doing the same thing as the GA with edge recombination. It would beinteresting, to compare LK with reduction to the GALK to see which performs better.4.3 Varying the amount of LSAfter �nding some good results for the GA with local search, I wanted to see how theamount of local search e�ected performance. To that end, I modi�ed the GA with LK, toonly perform n local search steps per individual per generation, and varied n and gagedperformance on the same 48 city instance. The results are shown in Figure 3 and 4.Figure 3 shows that as the n increases, the number of evaluations also increases, as isexpected. The dotted line is for when an in�nite amount of local search is allowed, ie. dolocal search until locally optimal.Figure 4 shows the same graph with the z axis representing the cost of the best tour found.

Genetic Algorithms and the Traveling Salesman Problem 11What this says is very surprising: even a small amount of local search helps the GA dramat-ically, even as little as 2 steps! Of course this is 2 steps of LK local search, which since it isa variable KOPT algorithm, could be transforming the tour radically. But nonetheless, thee�ect is remarkable. By reducing the amount of local search that the GA does, it can save asubstantial percentage of its evaluations, and possibly have more time to search. It shouldthen do even better against the standard LK heuristic.5 ConclusionThe experiments in the last section show that a GA alone is no match for even simple localsearch heuristics, but the GA/local search hybrid is much more powerful. Experiment 2shows the e�ect of adding the LK heuristic as local search in the GA. Experiment 3 showsthat not very much local search is needed to improve the GA dramatically. This implies thata GA with limited local search abilities can be better than either GA or local search alone.Much more work is needed to adequately support the above claims. For example, how doesit scale? What is the tradeo� in terms of population size and number of generations? Whyis it that a little local search performs as well as lots of local search? These are questions towhich I don't have answers. Much more testing and analysis is needed. But these results doindicate the importance of local search in genetic algorithms.References[1] Lawler, Lenstra, Kan and Shmoys, The Traveling Salesman Problem, John Wiley &Sons, 1985[2] S. Lin and B.W. Kernighan, \An E�ective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Res. 21(1973), 498-516[3] David Johnson, \Local Optimization and the Traveling Salesman Problem," Proc. 17thColloquium on Automata, Languages and Programming, Springer-Verlag (1990), pp 446-461[4] David Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,Addison-Wesley Publishing Company, 1989[5] David Goldberg and Robert Lingle, \Alleles, Loci, and the Traveling Salesman Problem"International Conference on Genetic Algorithms, 1985[6] Kenneth De Jong, \Genetic Algorithms: A 10 Year Perspective" International Confer-ence on Genetic Algorithms, 1985

Genetic Algorithms and the Traveling Salesman Problem 12[7] Prasanna Jog, Jung Suh and Dirk Van Gucht, \The E�ects of Population Size, HeuristicCrossover and Local Improvement on a Genetic Algorithm for the Traveling SalesmanProblem" International Conference on Genetic Algorithms, 1989[8] Darrell Whitley, Tim Starkweather and D'Ann Fuquay \Scheduling Problems and Trav-eling Salesman: The Genetic Edge Recombination Operator" International Conferenceon Genetic Algorithms, 1989[9] John Grefenstette, Rajeev Gopal, Brian Rosmaita, Dirk Van Gucht, \Genetic Algo-rithms for the Traveling Salesman Problem" International Conference on Genetic Al-gorithms, 1985[10] John Holland, Adaptation in Natural and Arti�cial Systems, Mit Press, 1992

