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1 Introduction

Genetic algorithms are a class of algorithms that mimic biological evolution and natural
selection to “evolve” solutions that are robust and “fit”. Their popularity is in part due
to their perceived notion that the GA is problem independent: although the meaning of
the string of bits may change, the algorithm to manipulate them does not. So by simply
transforming the problem from the natural solution space (the phenotype) to the bit-string
representation (the genotype), and applying a standard GA, good solutions will naturally
evolve given enough time.

If this is the case, it seems only natural to use GA’s to solve hard combinatorial optimization
problems and, in particular, the Traveling Salesman Problem. This problem asks: given that
a salesman wishes to visit IV cities with the constraint that every city gets visited and no city
gets visited twice, what is the minimum length tour he must take? Although this problem
is conceptually easy to understand, it turns out it is very difficult to solve. With N cities,
there are N! number of tours the salesman can take, so doing a brute force calculation for
the optimal tour quickly exceeds the computing resources of today as N increases.

The TSP problem seems ideally suited for the GA: it has a large solution space, no known
polynomial solution, and a specific and easily calculated fitness function. However, after more
then a decade of research, GAs still produces results that are far worse than conventional
heuristics. The reason is that for the TSP, the constraints of the problem make it difficult
to generate a representation of the genome for which the building block hypothesis holds: the
standard mutation and crossover operators do not work well because the result child genome
rarely produces a valid tour. Work in the last 10 years has been focused on developing new
representations and new operators that produce valid tours and that build on the previous
generations.

Section 2 of this paper reviews the history of the TSP and the standard heuristic algorithms
used. Section 3 surveys the attempts using GA’s for the TSP in the past decade. Section
4 and 5 discuss some experiments done with hybrid GAs: genetic algorithms that use local
search at each generation. The results seem to indicate that while GA’s in general have had
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little success, GA /LS hybrids do surprisingly well, competing with the best known heuristics.
Section 6 concludes with some final thoughts.

2 The Traveling Salesman Problem

The Traveling Salesman Problem is perhaps the oldest and best studied problems in an area
called combinatorial optimization. It’s history can be traced as far back as Euler [1759]
and Hamilton [1856] who studied similar problems. But it wasn’t until the 1930’s that the
problem got its name. At the time, researchers were studying many different optimization
problems like the assignment problem and the transportation problem which looked very
much like the TSP. But by the 1960’s it was clear that the TSP was inherently more difficult.

Then in the early 70’s, this concept of difficulty was formalized by Cook with the introduction
of the theory of NP-Completeness. Any problem in this class was as difficult as any in NP
(Non-deterministic Polynomial). If NP = P, then these NP-Complete problems did have an
efficient solution, however no one has proved that this is the case. Furthermore, It is widely
believed that NP # P, and the only solutions for NP-Complete problems (including TSP)

are exponential-time ones.

But TSP is not only very hard, it is also very useful in areas like VLSI layout, X-ray
crystallography, or job scheduling. Although optimal solutions are hard, many people have
developed heuristics that find “good” sub-optimal tours. One of the reasons that TSP is
an important problem is that it has provided a testing ground for new algorithmic methods
such as dynamic programming, branch and bound, and more recently simulated annealing
and genetic algorithms. If a new method works well on the TSP, the chances are good that
that same method will work in many other problems.

However, even finding good heuristics for the TSP is not easy. Sahni & Gonzalez [1976] [1]
showed that for the symmetric TSP, if a polynomial time heuristic H had a worst case upper
bound, then P = NP. So finding a good general heuristic is as hard as finding the solution.

Another popular method for finding solutions is local search: simply start at a random
solution, and if a “neighbor” of that solution (as defined by a neighborhood function) has
better fitness, then replace the current solution with this neighbor, and repeat. This type of
algorithm is commonly called “Hill Climbing” due to the fact that it always moves up the
fitness landscape until a local optimal (a hill) is reached. Papadimitriou & Steiglitz [1977] [1]
showed that using a local search procedure cannot produce tours whose length is bounded
by a multiple of the optimal tour length.

There seems to be little hope for the general TSP. If, however, we add an additional constraint
then we can show stronger results. This extra constraint is the triangle inequality: given
any three cities, ,y, z, it must be the case that

d(z,z) < d(z,y) +d(y, 2)
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For most of the versions of TSP encountered in practice, this is a reasonable constraint.

Given this constraint, many heuristics have been developed which provide various degrees
of performance.

2.1 Constructive Heuristics

The Nearest Neighbor Algorithm is perhaps the simplest and most intuitive heuristic for the
euclidian TSP. It operates as follows: pick any starting city ¢y, and repeatedly pick the :th
city such that ¢; is the closest unvisited city to ¢;_;. It is clear that it will produce a valid
tour, but Rosenkrantz, Stearns & Lewis [1977] showed that the quality of the tour does not
have an upper bound. In other words, one can construct a TSP instance such that this
procedure is arbitrarily bad. The triangle inequality does, however, limit the growth rate to

O(logn).

A better result can be shown for the Minimum Spanning Tree algorithm. This algorithm
uses standard polynomial-time algorithms to find the minimum spanning tree (which can be
found in O(N?)). A lower bound on the optimal tour can be determined by observing that
the optimal tour with any edge removed is a spanning tree. Therefore

OPT(t) > MST(1)

Observe that a depth-first traversal of the tree produces a tour of length at most twice the
MST(t). This, combined with the lower bound, gives an upper bound on the optimal tour
constructed this way,

DFMST(t) <20PT(t)
where DF M ST is the tour obtained by the depth-first traversal.

Christofides” algorithm provides an even better worst case guarantee: C'(t) < %OPT(t) where
C(t) is the tour produced by

e construct a minimum spanning tree T’
e construct a minimum matching Mx* for the set of all odd-degree vertices
e find a eulerian tour for the graph G =T U M.

e convert the eulerian tour into a TSP tour using “shortcuts”

For a complete description of the above algorithms and their performance see [1].
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2.2 Local Improvement Heuristics

A different approach to find good tours is to start with any tour and try to iteratively improve
it by making small changes. This method is called “local search” because it does not try to
find the global optimal; rather it only considers tours that are the “neighbor” of the current
tour, and if some neighbor exists that is “better” than the current tour, the current tour is
set to this neighbor, and the process is repeated until there are no better neighbors. At this
point, the tour is said to be “locally optimal.”

Different local search algorithms have differing concepts of “neighbor.” ranging from simple

(20PT) to very complex (Lin-Kernighan). But all these methods are very difficult to prove
bound on because the number of iterations of local search is highly dependent on the initial
position.

2.2.1 2-Opt

The most simplest of the local search procedures is called “20PT.” 20PT starts with a
randomly generated tour and then removes two random edges, reconnecting them so they
cross. This procedure is repeated until a local optimal is found. This is called one “run.”
Usually many different runs, starting from different randomly generated tours, are performed

and the best tour ever seen returned.

3OPT is an extension of 20PT in which three edges are replaced with three new edges such
that the tour is still valid. Experimental results [3] show that 30PT finds much better tours
than 20PT. Both these heuristics work surprisingly well considering their simplicity.

2.2.2 Lin-Kernighan

The Lin-Kernighan heuristic extends 30PT even more: instead of having KOPT for some
fixed k, Lin and Kernighan developed a variable kKOPT strategy. Given a tour ty, a neighbor
is generated by first doing a 20PT generating #; and evaluating the tour. If this is better
than the original, tj. is set to £;. Then if ¢; can be modified such that another edge can be
replaced so the total cost is less than #;, replace that edge and call the tour ¢;44. If ;41 is
better than fj.s, reset tp.;. Continue this process until edges can not be found to replace
one in the tour. Then return ...

This process just returns the neighbor of the current tour. As with the other local search
algorithms, if this is better than the current, set the current to this neighbor and repeat
until a local optimal is found. Then repeat for multiple runs.

There are many details left out of the description above for the sake of readability. The
actual implementation details can be found in [2]. Currently the best algorithms available
for the TSP use some variation of the Lin-Kernighan heuristic. They perform very well for
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practical TSP instances, performing about 2-3% above optimal for large instances. For a
complete performance analysis of the heuristics see [3].

3 Genetic Algorithms for the TSP

So far, we have seen examples of two different optimization methods: what Goldberg calls
random (hill climbing) and specialized (nearest neighbor, DFMST)[4]. There is another
standard technique, enumeration, which for the TSP, could be brute force, dynamic pro-
gramming, etc.

The problem Goldberg cites with these methods are that enumeration and random techniques
perform over a large problem space, but perform uniformly badly. Specialized techniques
perform much better, but only for a small class of problems. What is really needed is a
“robust” scheme that works across a wide range of problems and works uniformly well.

Enter the Genetic Algorithm: search algorithms based on the mechanics of natural selection
and biological genetics. It was observed that biological organisms are continually adapting
to their environment, getting better and better at surviving over the generations. In terms
of optimization theory, the individuals are “optimizing” to their environment. And this
method is robust, it works from the deserts of the Sahara, to the mountains in Tibet.

Genetic Algorithms are different that the other techniques: GA’s work with a population of
individuals, and although a specific individual in the population might be unfit, as a whole,
the population becomes fitter. Another difference is that GA’s work with an encoding of
the solutions, rather than the solutions themselves: just like the phenotype of biological
organisms is encoded in the DNA as the genotype. The genetic operators then operate on
this encoding.

GAs work as follows: An initial (random) sampling of solutions is chosen to initialize the
population. A process of selection is carried out, where only the most fit of the population
survive. The genes of these fit individuals are combined through crossover, and mutated
to form the next generation. The gene is usually implemented as a bitstring. Crossover is
done by selecting a random point on the genomes of the parents, and swapping the subsets.
Mutation is a random bit flip. The Schema Theorem also know as The Fundamental Theorem
of Genetic Algorithms shows that for the above situation, above average solutions genes will
be represented in exponentially increasing numbers.

For the TSP, if we use the most natural representation, an ordered list of cities, notice that
the standard operators of crossover and mutation do not always produce valid tours. One
might respond “so, biological organisms do not always produce valid children.” But this is
very rare: in fact, most of the time, they do. For TSP, the number of possible solutions is
NN, however, the number of valid tours is N!. This means that the valid tours are a small
subset of all possible solutions. If a GA is to work reasonably well it must weed out all
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those invalid tours. This leads to the problem of representation: How does one represent
the solution on its genome, such that the genetic operators use information in the parents’
genes to produce “better” children with high probability? This has been the focus in GA
research with respect to the TSP.

3.1 Goldberg and the PMX Operator

David Goldberg proposed the “Partially-Mapped Crossover” operator [5]: given two parent
tours, say

A =

9 8 6 7 1 3 2 10
B=8 7

4
1 3 109 5 4 6

5
2
the child tours are produce by picking two random numbers and swapping the cities within
the bounds. Some clean up is then required because it might be the case that the child has
duplicate cities. If a city is represented twice in the child (one originally, and one from the
swapped substring), simply replace the first occurrence with a city that got swapped away.

For example if the two random numbers are 4 and 6, the substrings to swap are “5 6 77 from
A, and “2 3 10” from B, resulting in one child:

Childi1 =8 7 1| 567119 5 4 6
Now swap the other 5 with the 2, the 6 with a 3, and the 7 with 10 to get
Child1 =8 101 | 56719 2 4 3

which is a valid tour.

The crossing over of parents does produce children that are, in some sense, similar to their
parents, but the swaping at the end introduces lots of randomness. Ideally, we would be
able to take the “best” from one parent and combine it with the “best” of the other parent.
“Best” for the TSP means subtours that are optimal. However, with PMX, the larger the
optimal subtour, the more likely it will be broken up.

Their results described in [5] are inconclusive at best. They only give results of two different
runs for a 10-city TSP instance. Their method does give good results, but with a rather
large population size of 200.

3.2 Grefenstette

Grefenstette et al present a number of various representations and their results on them [9].
The first is Ordinal Representation, in which a tour is described by a list of N integers in
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which the ith element can range from 1 to (N —i+1). So, for example, the path (a ¢ e d b)
corresponds to the ordinal representation (1 2 3 2 1).

The advantage of this representation is that standard (2-point) crossover can be used and
will create valid tours. However, the child might be arbitrarily random, depending on the
crossover points. The relationship to the parents is missing. Experimental results by Grefen-
stette show that in most cases, ordinal representation does no better than random search on

TSP.

Another representation is Adjacency Representation: there is an edge in the tour ¢ if and
only if the allele in position ¢ is j. For example the representation (1 3 5 4 2) corresponds
to the tour (3 1 5 2 4). Crossover for this representation is done by either alternating
edges or by subtour chunking.

This, I believe, is moving in the right direction: ideally, if we knew which subtours of each
parent were a part of the optimal tour, then we could form children such that both the
subtours of each parent are present. This is important for the building block hypothesis
which states that GA’s try to “build” on the fitness of each parent. Alternating edges,
however, are too fine building blocks: any optimal subtour will have a high probability of
being broken. Mixing subtours should perform better. Grefenstette’s results show alternating
edges perform uniformly bad, as expected, but also that subtour mixing performed badly.
Their hyperplane analysis showed that “there is generally no significant difference between
the mean relative performance of any two competing first order hyperplanes.” Which means
that for this scheme, better individuals don’t dominate the populations.

3.3 Whitley and Edge Recombination

Whitley’s representation [8] builds on the adjacency representation of the last section. They
believe that since the edges are the important component of TSP, that they should be
encoded on the genome instead of the ordering of the cities. In addition, they developed a
crossover operator called Edge Mapped Crossover which they claim transfers 95-99% of the
edges from the parents to the child. The reason that this is desired is that the children of
the parents should have some common traits of each parent, be them good or bad. If they
are bad, the selection algorithm will weed them out. But if they are good, then the those
genes are spread to the next generation.

Their crossover operates as follows: consider to tours (a b ¢ d e f) and (b d ¢ a e f).
It we “place” both tours on the map together, we will find that each city has between 2 and
4 edges adjacent to it. It has 2 if both tours go through the city in the same way, and 4 if
they go through in completely different ways. So the edge map looks like:

a:bfce
b:acdf
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:bda
:ceb
:d f a
:aeb

H 0 & 0

To create the child, start at any node, say 6. Now the possible choices are a,c,d, f. Notice
that ¢, d, f all have only 2 edges (after removing the b), while @ has 3 edges. So pick a city
with the minimum amount of edges, and continue. So (b ¢ d e a f) is a child.

The rational for this method is that those subtours that are shared between the parents will
have a high probability of being transfered to the parent. The disadvantage of this method
is that it is still randomly choosing between an edge of each parent, breaking up larger
subtours. Although it might work better than other GA methods, it still does far worse than
local search heuristics, even 20PT. In the next section I describe some experiments where
this method was compared with local search heuristics.
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4 Experimental Setup

These experiments compared the performance of the Lin-Kerighan heuristic, 20PT and the
GA using edge recombination as described in [8]. Each was coded in standard C and run
on Sun Sparcstations. The TSP instances were obtained form the TSPLIB instance package
available over the network.

The GA used a simple selection and breeding mechanism: of the individuals in the population
at generation t, selection for £ + 1 was done by eliminating the bottom (1 — s)%. Crossover
was used to generate enough new individuals to fill the population. Selection of the parents
was done at random with uniform distribution. And mutation was not introduced.

20PT and LK were implemented as described in [2] and [1]. It should be noted that this
implementation of the Lin-Kernighan did not include refinements as proposed in [2] such as
lookahead, or reduction.

Fitness was computed as the sum of the squares of the distances of the cities in the tour. This
was done in order to eliminate any roundoff errors that might accumulate from the square
root function. The percent off of optimal will, however, be different that that reported in
the literature. But since only relative performance is being judged, this is acceptable.

The goal was twofold: first, to determine how a “good” GA compares with other heuris-
tics, and second, to see the effect of combining local search and the GA. Performance was
measured in number of tour evaluations. Although this is not as accurate as CPU time, it
abstracts away the differences in implementation.

4.1 GA vs. 20PT vs. LK

The first experiment was run to gauge the relative performance of the GA, 20PT and the
LK heuristic (see Figure 1). Data was collected for the 48-city symmetric euclidean instance,
with multiple runs each with different random seeds.

The GA was run with selection criteria s = .7, so the top 70% of the individuals from each
generation would breed and continue. For each method, a maximum number of evaluations
was allowed, after which the method would return its best tour found.

I first tested the GA on a 10 city instance, and found that given a population of around 200
and 200-300 generations, the GA does consistently find the optimal city. I then moved to a
48 city instance, where I tested all three methods.

As can be seen from Figure 1, the GA provides little competition for either the LK heuristic
or 20PT. As the number of evaluations is allowed to increase, the GA does do better and
better. But on average, performance is still poor.

One explanation is that GAs do better when the number of generations and population size
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is larger. In these graphs, I considered the low range in the number of evaluations. In the
experiments by Whitley, a 50 city instance took a population of 600 and around 25,000
evaluations before their results came close to optimal. In larger TSP instances, it might be
the case that GA’s do better as compared with the pure local search heuristics.

4.2 GALK vs. LK

For the next experiment, I modified the GA to use the LK heuristic at each generation to
optimize each individual in the population with local search. Local search was performed
until the tour was locally optimal. Recombination then occured with the locally optimal
parents — Lamarkian Evolution. The results are shown in Figure 2 for the same 48 city
instance. The results show that GA with LK local search is much more competitive, and, in
fact, consistently outperforms the random multistart LK.

If the GA did nothing at all interesting, recombining two parent tours and produced random
child tours, we would expect that the GA with LK would do no worse than LK. But since
it is doing better, it implies that the recombination operator is doing something interesting.
Edge recombination attempts to save all edges that are common to the parents. So for a
population of locally optimal tours, if there are some common optimal subtours, it is likely
that they will be passed to the next generation. All other edges will essentially be shuffled.
This is enough randomization to move the child tour far enough away from the parents so
the local search can find different local optimal.

This idea is not new. Lin and Kernighan in [2] mentioned a optimization technique that
worked very well for them. They called this method “reduction”, and it worked as follows:
after finding some number of locally optimal tours with random multistart LK, the initial
tours would be limited to those containing the common edges of the previous tours. So their
method is really doing the same thing as the GA with edge recombination. It would be
interesting, to compare LK with reduction to the GALK to see which performs better.

4.3 Varying the amount of LS

After finding some good results for the GA with local search, I wanted to see how the
amount of local search effected performance. To that end, I modified the GA with LK, to
only perform n local search steps per individual per generation, and varied n and gaged
performance on the same 48 city instance. The results are shown in Figure 3 and 4.

Figure 3 shows that as the n increases, the number of evaluations also increases, as is
expected. The dotted line is for when an infinite amount of local search is allowed, ie. do
local search until locally optimal.

Figure 4 shows the same graph with the z axis representing the cost of the best tour found.
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What this says is very surprising: even a small amount of local search helps the GA dramat-
ically, even as little as 2 steps! Of course this is 2 steps of LK local search, which since it is
a variable KOPT algorithm, could be transforming the tour radically. But nonetheless, the
effect is remarkable. By reducing the amount of local search that the GA does, it can save a
substantial percentage of its evaluations, and possibly have more time to search. It should
then do even better against the standard LK heuristic.

5 Conclusion

The experiments in the last section show that a GA alone is no match for even simple local
search heuristics, but the GA/local search hybrid is much more powerful. Experiment 2
shows the effect of adding the LK heuristic as local search in the GA. Experiment 3 shows
that not very much local search is needed to improve the GA dramatically. This implies that
a GA with limited local search abilities can be better than either GA or local search alone.

Much more work is needed to adequately support the above claims. For example, how does
it scale? What is the tradeoff in terms of population size and number of generations? Why
is it that a little local search performs as well as lots of local search? These are questions to
which I don’t have answers. Much more testing and analysis is needed. But these results do
indicate the importance of local search in genetic algorithms.
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