
Genetic Local Search for the TSP: New Results
Peter Merz and Bernd F’reisleben

Department of Electrical Engineering and Computer Science (FB 12)
University of Siegen

Holderlinstr. 3, D-57068 Siegen, Germany
E-Mail: {pmerz.freisleb}@informatik.uni-siegen.de

Abstmct- The combination of local search heuristics and ge-
netic algorithms has been shown to be an effective approach
for finding near-optimum solutions to the traveling sales-
man problem. In this paper, previously proposed genetic
local search algorithms for the symmetric and asymmetric
traveling salesman problem are revisited and potential im-
provements are identified. Since local search is the central
component in which most of the computation time is spent,
improving the efficiency of the local search operators is cru-
cial for improving the overall performance of the algorithms.
The modifications of the algorithms are described and the
new results obtained are presented. The results indicate
that the improved algorithms are able to arrive at better
solutions in significantly less time.

I. INTRODUCTION

Consider a salesman who wants to start from his home
city, visit each of a set of n cities exactly once, and then
return home. Since the salesman is interested in finding
the shortest possible route, this problem corresponds to
finding a shortest hamiltonian cycle in a complete graph
G = (V, E) of n nodes. Thus, the traveling salesman prob-
lem (TSP) [22], [32] consists of finding a permutation 7~ of
the set { 1,2,3, . . . , n } that minimizes the quantity

where di j denotes the distance between city i and j . In the
symmetric TSP (STSP), dij = dji holds for all i , j , while in
the asymmetric TSP (ATSP) this condition is not satisfied.

The TSP is among the best-known combinatorial op-
timization problems. It has attracted many researchers
from various fields, perhaps because it is easy to state but
extremely hard to solve. Since it belongs to the class of
NP-hard problems [14], fast approximation techniques for
finding optimum or near-optimum solutions to large TSP
instances in a given time limit are required.

In addition to the classical heuristics developed espe-
cially for the TSP [32], there are several problem inde-
pendent search algorithms which have been applied to the
TSP, such as ant colonies [13], genetic algorithms [17], local
search [20], neural networks [30], simulated annealing [21],
and tabu search [9]. The results published in the litera-
ture indicate that it is necessary to combine some of these
methods in order to arrive at high quality solutions, par-
ticularly for large problem instances. For example, local
search has been used in [7], [8], [18], [33], [34] to improve
genetic algorithms (GAS) for the TSP. As a consequence,

Gorges-Schleuter and Muhlenbein [15], [16], [27] have pro-
posed a GA where all individuals of the population are local
minima with respect to the embedded local search method.
Ulder et al. [35] compared this genetic local search (GLS)
approach with other heuristics and observed that GLS is
superior to simulated annealing as well as multi-start lo-
cal search. In [ll], [12] we proposed new operators for GLS
which are designed to produce better (locally optimal) indi-
viduals from existing ones, with the ability to find optimal
solutions for symmetric TSP instances of up to 1400 cities.

In this paper, the GLS algorithms for the symmetric and
the asymmetric TSP proposed in [ll], [12] are revisited.
Since the central component of the algorithms is the local
search operator, and improving the efficiency of this opera-
tor consequently improves the overall performance, we will
take a closer look at the hill-climbers used in our approach
and discuss how they can be tuned for speed as well as
for quality. The results obtained indicate that compared
to our winning algorithm of the First International Con-
test on Evolutionary Optimization held as part of the 1996
IEEE International Conference on Evolutionary Compu-
tation in Nagoya, Japan [4], the computation times could
be reduced significantly, and the solution qualities could
further be improved.

The paper is organized as follows. Section 2 gives a gen-
eral description of the GLS approach to the TSP. Section
3 presents genetic operators for the symmetric TSP, while
section 4 is devoted to the asymmetric case. Section 5
summarizes the improvements made in our implementa-
tion. The computational results are presented in section 6.
Section 7 concludes the paper and outlines areas for future
research.

11. THE GLS ALGORITHM FOR THE TSP

In the GLS algorithm, all individuals represent local min-
ima. Therefore, after applying a genetic operator, the local
search procedure must be applied to the resulting individ-
ual. The GLS algorithm proposed to solve the TSP is pre-
sented in Fig. 1.

First, the initial population is created by a tour construc-
tion technique, which in our case is the nearest-neighbor
heuristic [22]. Then, a suitable local search procedure is
applied to each individual. In the main loop, crossover
and mutation operators are applied to randomly selected
individuals a predefined number of times. To achieve local
optimality, the hill-climber is employed after each applica-
tion of an operator, and the newly created individuals are

0-7803-3949-5/97/$10.00 01997 IEEE 159

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

mailto:pmerz.freisleb}@informatik.uni-siegen.de

procedure GLS;

begin
initialize population P with a construction heuristic;
foreach individual i E P do i := Local-Search(i);
repeat

for i := 1 to #crossouers do
begin

select two parents i,, ib E P randomly;
i, := DPX(i,,ib);
i, := Local-Search(&);
add individual zc to P ;

end;

begin
for i := 1 to #mutations do

select an individual i E P randomly;
i, := Mutate(i);
i, := Local-Search(&);
add individual i, to P ;

end;
P := select(P);

until P converged;
end;

Fig. 1. The GLS Algorithm for the TSP

inserted into the population. In the last step of each gen-
eration, the population is reduced to its initial size by first
eliminating old individuals which are similar to the newly
created individuals, and then selecting the individuals with
the highest fitness until the population size is reached.

Unlike classical genetic algorithms, where mutation is
refered to as a background operator, GLS makes equal
use of both crossover and mutation operators. The goal
of the operators used in conjunction with the local search
method is to produce hopefully better individuals from ex-
isting ones by utilizing the information already contained
in the current population. The approach is motivated by
the observation [5], [28] that near-optimum and optimal
solutions are quite similar: they have many edges in com-
mon. To describe the similarity of solutions more precisely,
we define the distance between tours corresponding to [6] ,
[24]. Let G = (V, E) be the graph of a given TSP instance
and TI , TZ feasible tours, then the distance D between the
tours is defined as

Since optima and near-optimum local minima lie rela-
tively close to each other in the search space, it seems to
be reasonable to explore the regions around the best solu-
tions collected so far during the search.

As described in [ll], [12], crossover and mutation per-
form “jumps” in the search space, and it is difficult to find
a diversification scheme that leads to promising regions of
the search space without degrading to an uncontrolled ran-
dom walk.

The crossover introduced in [l l] , [12] is called the dis-
tance preserving crossover (DPX). Here, a child i, is cre-
ated by copying the edges to the offspring that are found
in both parents ia and i b , and reconnecting the resulting

~

160

tour fragments without reinserting the edges that are dif-
ferent in the parents. Thus, the child has equal distance to
both parents, and this distance is also equal to the distance
between the parents themselves:

D(icl ia) 1 D(ic, i b) = D(ia , ib). (3)

The DPX is motivated by the observation of Boese [5] ,
that for the symmetric 532-cities instance of Padberg and
Rinaldi [29] the optimum lies more or less in a single valley
of near-optimum local minima and the average distance
between these near-optimum solutions is similar to their
distance to the optimum. Another motivation is that by
identifying the edges that are not shared by the parents, the
search will be focused on particular regions of the search
space. By inheriting the shared edges, we assume that
these edges are likely to be contained in the optimum as
well, because they have been proven to be “building blocks”
during the search. With these ideas in mind, the proposed
crossover operator neither depends on a particular problem
(as long as the distance criterion (3) can be fulfilled), nor
on the type of local search subsequently used.

On the other hand, the mutation operator is highly de-
pending on the hill-climber chosen. Since it is a unary
operator, we must decide at a single point in the search
space which region to explore next. It is reasonable to re-
place only a few edges in the individual in a way that the
permutation will not be reversed by the subsequent local
search. Therefore, some knowledge about the incorporated
hill-climber might be helpful.

111. THE OPERATORS FOR THE STSP
The local search method used for symmetric TSP in-

stances is the variable k-change heuristic suggested by Lin
and Kernighan [23]. In each step, a varying number of
edges is exchanged, until no exchange will reduce the tour
length further, i.e. when a local minimum is reached. This
heuristic produces quite good results even when applied
alone. For most instances defined in the TSPLIB [31], the
average percentage excess is about 2% above the optimum,
although there are instances with topographical structures
for which the results are much worse, such as the instance
f13795 [20].

The mutation operator used in the symmetric TSP is
called the non-sequential four-change [23] which has also
been used in the large step Markov chain algorithm pro-
posed by Martin et al. [25] and the iterated Lzn-Kernzghan
heuristic suggested by Johnson [19]. Since in the Lin-
Kernighan heuristic only sequential changes are performed,
the effects of this kind of mutation cannot be reversed in
a single step, and there is a high probability for ending up
with a new solution after the local search phase. Since only
four edges are exchanged, most information coded in the
genotype will be preserved.

I v . THE OPERATORS FOR THE ATSP
In the ATSP, the distance value associated with edge

(i , j) is different from the one of edge (j , i) , such that local

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

search procedures developed for symmetric instances are
not very effective. The 2-opt algorithm, for instance, tries
to find pairs of edges for which an exchange results in a
reduction of the total tour length. For example, consider
the individual A shown in Fig. 2, which represents a tour
from city 5 to city 3 to city 7 and so on.

P

I U I A:

U
C:

P1 p3 p2

Fig. 2. Illustration of Inversion and Local Search Operators

If the exchange of the edges (3,7) and (4,2) by (3,4) and - -
(7,2) will lead to a shorter tour, the 2-opt algorithm will
perform the swap by reversing the order of the subpath
from city 7 to 4, as shown by the tour B in Fig. 2.

In the ATSP the reversal of the subpath leads to a k-
change. In the above example, the distance between tour
A and B is D = 5, because edges (3,4), (4,6), (6, l), (1,7)
and (7,2) are not contained in tour A . It is easy to see
that for the ATSP the minimum distance between tours is
D = 3. Individual C in Fig. 2 represents a tour with a
distance D = 3 to tour A. As illustrated, tour C can be
obtained by swapping subpath P2 and P3 in tour A, which
is equivalent to a %opt move. Analogously, it is possible
to perform a valid 4-opt move by rearranging a tour that
consists of subpaths PlP2P3P4 in a way that the order of
the subpaths in the resulting tour is P I P ~ P ~ P ~ .

The local search procedure used in our GA for the ATSP
performs both 3-opt and &opt moves. To reduce the run-
ning time for finding a 4-opt move, information obtained
from previous iterations of the search is used: the four
edges to exchange in a step consist of a pair of edges iden-
tified as candidates in the current step and a pair of edges
identified in a previous iteration. This enables us to per-
form Cchanges without increasing the running times com-
pared to 3-opt without additional 4-changes.

Mutation is performed by reversing a randomly chosen
subpath of length 6 analogously to the example shown in
Fig. 2. Thus, by the reversal of a subpath the mutation
operator performs a random 7-change on the current tour.

V. IMPLEMENTATION ISSUES
The efficiency of the embedded local search algorithm

has a large impact on the performance of the entire algo-
rithm, since about 95% - 99% of the total CPU time is
spent in the local search procedure. Thus, the main goal

~

161

is to optimize the local search procedure in order to run
much faster without losing too much quality. A complete
enumeration of the neighborhood is not very effective, since
the size of the k-opt neighborhood grows polynomially with
k , i.e. the neighborhood defined as

N k o p t (T) = {T‘ I D (T , T‘) I k } (4)
is of size O(nk) . Even for small k , the computation times
may increase considerably. To obtain computation times
that grow subquadratically in practice, a small portion of
the neighborhood may be inspected where good solutions
are most likely to be found. This can be achieved by main-
taining a list of nearest neighbors for each node [20], [32].
If an edge in the current tour is considered for replacement,
only candidates drawn from the nearest neighbor list are
examined. If the size of the neighbor list is bound by a
constant, it is possible to identify an improving k-opt move
associated with a given starting node in constant time, and
hence the time for checking an improving move is O(n) .
Further reductions result from performing a fixed radius
nearest neighbor search, as proposed by Bentley [l], [3].

Another mechanism to speed up local search algorithms
is to incorporate a “don’t look bit” for each node, in order
to reduce the time for checking the interesting neighbors [l].
With the don’t look bit set to 1, the node is not considered
as a starting point for finding an improving move. Initially,
all bits are set to 0. If an improving move could not be
found starting at node i, the don’t look bit for that node is
set. On the other hand, the don’t look bit will be cleared
if an improving move has been found that inserts an edge
incident to node i.

In our implementation, we use a nearest neighbor list of
size m = 100 for each node, which is initialized by nearest
neighbor queries on a two-dimensional binary search tree
[2] in case of the algorithm for the STSP. In the ATSP, we
adapted the recursive quicksort algorithm to sort the first
m entries of the rows of the distance matrix. In both local
search procedures, a data structure for maintaining don’t
look bits is incorporated, with the local search for the initial
population starting with all don’t look bits set to zero.
After the crossover has been performed, only the don’t look
bits of the nodes that are incident to the edges not shared
by both parents are cleared. Similarly, after mutation, only
nodes incident to the edges newly included in the tour have
their don’t look flags set to zero. This focuses the search
of the hill-climber to the promising regions of the search
space and also reduces the time for checking the interesting
members of the neighborhood.

Additionally, in the algorithm for the STSP, some
changes have been made to deal with large instances of
up to 100.000 cities. Since for large instances it is not POS-

sible to store the entire distance matrix in main memory,
the Euclidean distances are computed online. Since this is
a rather expensive operation, a distance cache of size 3 . n
is maintained, where the first n entries are used to cache
the distances of the edges in the current tour and the re-
maining 2 . n entries are organized as described in [2]. The
average hit rate of the cache varies between 80% and 95%.

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

STSP Results
instance I gen I best I average I t i n s

&48p ' 700 ' 14422 (0.00 % j ' 14451.2 (0.20 % j ' 72
f t 7 0 40 38673 (0.00 %) 38674.2 (0.00 %) 111 .
kro124p 200 36230 (0.00 %) 36231.5 (0.00 %) 35
f t v l 7 0 400 2755 (0.00 %) 2762.2 (0.26 %) 100

ATSP Results
instance I rren I best I average I t in s " , " I

I P43 I 60 I 5620 (0.00 %I I 5620.1 f 0.00 %i I 11 I

Fig. 3. The Computational Results

Another target for optimizations is the Lin-Kernighan
heuristic itself. Most of the computation time is spent
in submoves that will be reversed later in the algorithm.
Hence, it is profitable to distinguish between tentative and
permanent moves. Applegate and Cook have proposed a
segment tree data structure for efficiently managing tenta-
tive moves, as described in [lo]. Our approach is similar:
instead of using a segment tree, we operate on a segment
list that represents a tentative tour. Operations perform-
ing a flip on this tentative tour are highly optimized, such
that a high performance gain compared to the simple array
representation can be achieved. The running times for all
operations are in 0(1), since the data structure is limited
to perform 20 flips only. In practice, this has been proven
to be sufficient.

VI. RESULTS

The algorithms presented in this paper have been im-
plemented in C++ on a DEC Alphastation 255 running
Digital Unix V4.

Detailed information about the development of the solu-
tion qualities in each of the experiments conducted is given
in the appendix. Fig. 3 summarizes the results obtained for
several STSP and ATSP instances taken from the TSPLIB
[31]. In the figure, gen denotes the number of generations
performed, best shows the length of the best tour found to-
gether with its deviation from the known optimum in per-
cent, average displays the same information for the average
of 20 runs, and t in s shows the average computation times
(in seconds) for a single run on a DEC Alpha CPU with
233 MHz. For the instances f 11577 and f 13795, we pro-
vide the deviation from the best known lower bound. For
the STSP instances, a population size of P = 20 was used
in our experiments, except for d198 where the population
contained P = 10 individuals. All runs on the asymmetric
instances were performed with P = 40. For both the STSP
and the ATSP, we used a mutation and a crossover rate of
0.5, i.e. P individuals were created in each iteration.

The computation times could be reduced significantly

~

162

compared to the results in [ll] for all STSP instances. Bet-
ter qualities could be achieved for all instances except for
instance d198. Obviously, the average quality (0.00 %)
cannot be improved further.

For example, the average running times for the 783-cities
problem rat783 were reduced from 14880 seconds to 424
seconds (a factor of more than 35), while the quality of
the results increased: the average percentage excess over
the optimum has dropped from 0.04% to 0.0023%. Re-
markable results have also been obtained for the smallest
yet unsolved problem defined in the TSPLIB, f 11577. The
average time for a local search could be reduced by a factor
of 48 to 2.12 seconds. This enabled us to run the algorithm
for an increased number of generations, ending up with a
best final tour length of 22249, which is the best known
upper bound for this instance. The gain in quality for the
average final tour length is also worth mentioning: the per-
centage excess over the lower bound dropped from 0.46%
to 0.21%.

The optimum for instance f 13795 is known to lie in the
interval [28723,28772]. The best tour found by our algo-
rithm for this instance has a tour length of 0.014% above
the upper bound. The relatively high average tour length
after 400 generations may be improved by running the al-
gorithm for a longer time.

The reasons for the strong increases of the computa-
tion times for the instances f11577 and f13795 are not
the problem sizes itself, but the characteristics of these in-
stances. They are pathologically clustered, making it much
harder to optimize them by neighborhood search. For ex-
ample, for another problem of comparable size (pcb3038),
the average running time for a local search is about 0.30
seconds and thus more than a factor of 7 faster than in the
case of f 13795 (2.22 seconds).

For the ATSP, the results in Fig. 3 represent a consid-
erable performance gain in comparison to the results pre-
sented in [l l] . For all instances except ry48p, the average
quality could be improved. For the largest instance investi-
gated, the average percentage excess over the optimum has
dropped from 0.40% to 0.26% using less than half of the
computation time. An even higher reduction of the com-
putation time could be achieved for problem ft70, which
is known to be a relatively hard problem for a hill-climber
[26]. In this case, the new algorithm is about 5.75 times
faster, and in almost all runs the optimum is found. With
the discussed modifications, the running times for all ATSP
instances are less than two minutes.

The improvements of our algorithms have led to much
faster local search procedures which produce slightly worse
tours than before. However, for both types of instances it
has proven to be more effective to produce more genera-
tions in the GA than to use more powerful embedded local
search methods.

VII. CONCLUSIONS

In this paper, improvements of GLS algorithms for the
TSP have been presented. The results presented for sev-

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

era1 symmetric and asymmetric TSP instances have shown
that some fine tuning of the local search procedures in the
GLS algorithms has a significant impact on the overall per-
formance. Sophisticated data structures and hill-climbers
with subquadratic runtime characteristics are the keys to
efficient neighborhood searches, in particular if large prob-
lem instances are considered. The experiments conducted
have demonstrated that a slightly weaker but considerably
faster local search method has the advantage of getting ex-
ecuted more often in a given time, which leads to a more
robust search algorithm that is able to carefully explore the
search space.

There are several issues for future research, such as in-
vestigating the effects of a parallel implementation of the
GLS approach, analyzing the individual performance gains
provided by the crossover and mutation operators, and con-
ducting further tests of the algorithms on other possibly
more complex TSP instances.

REFERENCES
J . L. Bentley, “Experiments on Traveling Salesman Heuristics,”
in Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 91-99, 1990.
J . L. Bentley, “K-d-Trees for Semidynamic Point Sets,” in Pro-
ceedings of the Sixth Annual ACM Symposium on Computa-
tional Geometry, pp. 187-197, 1990.
J . L. Bentley, “Fast Algorithms for Geometric Traveling Sales-
man Problems,” ORSA Journal on Computing, vol. 4, no. 4,

H. Bersini, M. Dorigo, S. Langerman, G . Seront, and L. Gam-
bardella, “Results of the First International Contest on Evolu-
tionary Optimisation (1st ICEO),” in Proceedings of the 1996
IEEE International Conference on Evolutionary Computation,
(Nagoya, Japan), pp. 611-615, 1996.
K. Boese, “Cost versus Distance in the Traveling Salesman Prob-
lem,’’ Tech. Rep. TR-950018, UCLA CS Department, 1995.
K. Boese, A. Kahng, and S. Muddu, “A New Adaptive Multi-
start Technique for Combinatorial Global Optimizations,” Op-
erations Research Letters, vol. 16, pp. 101-113, 1994.
R. M. Brady, “Optimization Strategies Gleaned from Biological
Evolution,” Nature, vol. 317, pp. 804-806, 1985.
T. G. Bui and B. R. Moon, “A New Genetic Approach for the
Travelinlr Salesman Problem.” in Proceedinas of the First IEEE

pp. 387-411, 1992.

U I -

Conference on Evolutionary Computation, pp. 7-12, 1994.
C.-N. Fiechter, “A Parallel Tabu Search Algorithm for Large
Traveling Salesman Problems,” Discrete Applied Mathematics
and Combinatorial Operations Research and Computer Science,

[lo] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ost-
heimer, “Data Structures for Traveling Salesmen,” Journal of
Algorithms, vol. 18, pp. 432-479, 1995.

[ll] B. Freisleben and P. Merz, “A Genetic Local Search Algo-
rithm for Solving Symmetric and Asymmetric Traveling Sales-
man Problems,” in Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, (Nagoya, Japan),

[12] B. Freisleben and P. Merz, “New Genetic Local Search Operators
for the Traveling Salesman Problem,” in Proceedings of the 4th
Conference on Parallel Problem Solving from Nature - PPSN
IV, (H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
eds.), pp. 890-900, Springer, 1996.

[13] L. M. Gambardella and M. Dorigo, “Ant-Q: A Reinforce-
ment Learning Approach to the Traveling Salesman Problem,”
in Proc. 12th International Conference on Machine Learning,
pp. 252-260, Morgan Kaufmann, 1995.

1141 M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, New
York, 1979.

[15] M. Gorges-Schleuter, “ASPARAGOS: An Asynchronous Parallel
Genetic Optimization Strategy,” in Proceedings of the Third In-

vol. 51, pp. 243-267, 1994.

pp. 616-621, 1996.

ternational Conference on Genetic Algorithms, (J . D. Schaffer,
ed.), pp. 422-427, Morgan Kaufmann, 1989.

[16] M. Gorges-Schleuter, Genetic Algorithms and Population Struc-
tures - A Massively Parallel Algorithm. PhD thesis, University
of Dortmund, Germany, 1991.

[17] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V. Gucht, “Ge-
netic Algorithms for the Traveling Salesman Problem,” in Pro-
ceedings of an International Conference on Genetic Algorithms
and their Applications, pp. 160-168, 1985.

[la] A. Homaifar, S. Guan, and G. E. Liepins, “A New Approach
to the Traveling Salesman Problem by Genetic Algorithms,” in
Proceedings of the 5th International Conference on Genetic Al-
gorithms, pp. 460-466, Morgan Kaufmann, 1993.

[19] D. S. Johnson, “Local Optimization and the Traveling Sales-
man Problem,” in Proceedings of the 17th International Collo-
quium on Automata, Languages and Programming, pp. 446-461,
Springer, Berlin, 1990.

[20] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman
Problem: A Case Study in Local Optimization,” in Local Search
in Combinatorial Optimization, (E. H. L. Aarts and J . K.
Lenstra, eds.), Wiley and Sons, New York, 1996. to appear.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by Simulated Annealing,” Science, vol. 220, pp. 671-680, 1983.

[22] E. L. Lawler, J . K. Lenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys, The h v e l i n g Salesman Problem: A Guided Tour of
Combinatorial Optimization. New York: Wiley and Sons, 1985.

[23] S. Lin and B. Kernighan, “An Effective Heuristic Algorithm for
the Traveling Salesman Problem,” Operations Research, vol. 21,

[24] K.-T. Mak and A. J . Morton, “Distances between Traveling
Salesman Tours,’’ Discrete Applied Mathematics and Combi-
natorial Operations Research and Computer Science, vol. 58,

[25] 0. Martin, S. W. Otto, and E. W. Felten, “Large-Step Markov
Chains for the Traveling Salesman Problem,” Complex Systems,

[26] P. Merz, Genetische Algorithmen fir kombinatorische Opti-
mierungsprobleme. Master’s thesis, University of Siegen, Ger-
many, 1996.

[27] H. Miihlenbein, M. Gorges-Schleuter, and 0. Kramer, “Evolu-
tion Algorithms in Combinatorial Optimization,” Parallel Com-
puting, vol. 7, pp. 65-88, 1988.

[28] H. Miihlenbein, “Evolution in Time and Space - The Paral-
lel Genetic Algorithm,” in Foundations of Genetic Algorithms,
(G. 3. E. Rawlins, ed.), pp. 316-337, Morgan Kaufmann Pub-
lishers, 1991.

[29] M. Padberg and G. Rinaldi, “Optimization of a 532-city Sym-
metric Traveling Salesman Problem by Branch and Cut,” Oper-
ations Research Letters, vol. 6, pp. 1-7, 1987.

[30] J.-Y. Potvin, “The Traveling Salesman Problem: A Neural
Network Perspective,” ORSA Journal on Computing, vol. 5,

[31] G. Reinelt, “TSPLIB- A Traveling Salesman Problem Library,”
ORSA Journal on Computing, vol. 3, no. 4, pp. 376-384, 1991.

[32] G. Reinelt, The Traveling Salesman: Computational Solutions
for TSP Applications. Vol. 840 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, Germany, 1994.

[33] J . Y. Suh and D. V. Gucht, “Incorporating Heuristic Information
into Genetic Search,” in Genetic Algorithms and their Applica-
tions: Proceedings of the Second International Conference on
Genetic Algorithms, pp. 100-107, Lawrence Erlbaum, 1987.

[34] A. Y. C. Tang and K. S. Leung, “A Modified Edge Recombina-
tion Operator for the Travelling Salesman Problem,” in Parallel
Problem Solving from Nature - Proceedings of the Third Work-
shop, PPSN III, (H.-P. Schwefel and R. Manner, eds.), (Berlin,
Germany), pp. 180-188, Springer, 1994.

[35] N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J . M. van
Laarhoven, and E. Pesch, “Genetic Local Search Algorithms for
the Traveling Salesman Problem,” in Parallel Problem Solving
from Nature - Proceedings of 1st Workshop, PPSN I , (H. P.
Schwefel and R. M h n e r , eds.), (Berlin, Germany), pp. 109-116,
Springer, 1991.

pp. 498-516, 1973.

pp. 281-291, 1995.

vol. 5, pp. 299-326, 1991.

pp. 328-348, 1993.

163

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

APPENDIX

I. COMPUTATIONAL RESULTS FOR THE STSP 11. COMPUTATIONAL RESULTS FOR THE ATSP

eval/gen best average t in s
20/ 1 15787 (0.04 %) 15797.6 (0.11 %) 8
SO/ 5 15780 (0.00 %) 15782.2 (0.01 %) 30

' 210/ 20 15780 (0.00 %) 15780.2 (0.00 %) 87
410/ 40 15780 0.00 %\ 15780.1 0.00 %) 163

l l O / 10 15780 (0.00 %) 15780.5 (0.00 %) 49

I dlgF4. t~~ 1

eval / gen
40/ 1
220/ 10
420/ 20
820/ 40
1220/ 60

best . average t in s
42029 (0.00 %) 42244.5 (0.51 %) 5
42029 (0.00 %) 42083.3 (0.13 %) 39
42029 (0.00 %) 42061.2 (0.08 %) 68
42029 (0.00 %) 42040.4 (0.03 %) 118
42029 (0.00 %) 42029.0 (0.00 %) 168

eval/gen
40/ 1
220/ 10
820/ 40
2020/100
2820/140

best average t i n s
50950 (0.34 %) 51075.7 (0.59 %) 2
50833 (0.11 %) 50889.6 (0.22 %) 20
50778 (0.00 %) 50791.4 (0.03 %) 65
50778 (0.00 %) 50780.1 (0.00 %) 135
50778 (0.00 %) 50778.0 (0.00 %) 178

step/gen

240/ 5
440/ 10
840/ 20
1640/ 40

80/ 1
best average t in s

38736 (0.16 %) 38842.7 (0.44 %) 23
41 38677 (0.01 %)

38675 (0.01 %) 38680.5 (0.02 %) 68
111 38673 (0.00 %)

38782 (0.28 %) 39072.9 (1.03 %) 4

38737.6 (0.17 %)

38674.2 (0.00 %)

step/gen
80/ 1
840/ 20
1640/ 40

16040/400
4040/100

I krol24u.atsn I

best average t in s
2866 (4.03 %) 2936.1 (6.57 %) 1
2800 (1.63 %) 2818.7 (2.31 %) 7
2767 (0.44 %) 2780.7 (0.93 %) 12

2755 (0.00 %) 2762.2 (0.26 %) 100
2755 (0.00 %) 2764.3 (0.34 %) 27

I step/gen 1 best average

33
35

eval/gen
40/ 1
820/ 40
2020/100
4020/200
6020/300

best average t in s

8876 (0.80 %) 8893.5 (0.99 %) 3
8815 (0.10 %) 8820.2 (0.16 %) 90
8806 (0.00 %) 8809.4 (0.04 %) 174
8806 (0.00 %) 8807.3 (0.01 %) 298
8806 (0.00 %) 8806.2 (0.00 %) 424

eval/gen
40/ 1
820/ 40
2020/100
4020/200
6020/300

Fig. 4. The Results for Symmetric TSP Instances

best average t in s
22362 (0.71 %) 22527.2 (1.46 %) 115
22257 (0.24 %) 22270.0 (0.30 %) 2582
22250 (0.21 %) 22254.7 (0.23 %) 5134
22249 (0.20 %) 22251.0 (0.21 %) 8981
22249 (0.20 %) 22250.5 (0.21 %) 12762

164

Authorized licensed use limited to: University of Primorska. Downloaded on February 1, 2010 at 14:29 from IEEE Xplore. Restrictions apply.

