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Abstmct- The combination of local search heuristics and ge- 
netic algorithms has been shown to be an effective approach 
for finding near-optimum solutions to the traveling sales- 
man problem. In this paper, previously proposed genetic 
local search algorithms for the symmetric and asymmetric 
traveling salesman problem are revisited and potential im- 
provements are identified. Since local search is the central 
component in which most of the computation time is spent, 
improving the efficiency of the local search operators is cru- 
cial for improving the overall performance of the algorithms. 
The modifications of the algorithms are described and the 
new results obtained are presented. The results indicate 
that the improved algorithms are able to arrive at better 
solutions in significantly less time. 

I. INTRODUCTION 

Consider a salesman who wants to start from his home 
city, visit each of a set of n cities exactly once, and then 
return home. Since the salesman is interested in finding 
the shortest possible route, this problem corresponds to 
finding a shortest hamiltonian cycle in a complete graph 
G = (V, E )  of n nodes. Thus, the traveling salesman prob- 
lem (TSP) [22], [32] consists of finding a permutation 7~ of 
the set { 1,2,3,  . . . , n }  that minimizes the quantity 

where di j  denotes the distance between city i and j .  In the 
symmetric TSP (STSP), dij  = dji  holds for all i , j ,  while in 
the asymmetric TSP (ATSP) this condition is not satisfied. 

The TSP is among the best-known combinatorial op- 
timization problems. It has attracted many researchers 
from various fields, perhaps because it is easy to state but 
extremely hard to solve. Since it belongs to the class of 
NP-hard problems [14], fast approximation techniques for 
finding optimum or near-optimum solutions to large TSP 
instances in a given time limit are required. 

In addition to the classical heuristics developed espe- 
cially for the TSP [32], there are several problem inde- 
pendent search algorithms which have been applied to the 
TSP, such as ant colonies [13], genetic algorithms [17], local 
search [20], neural networks [30], simulated annealing [21], 
and tabu search [9]. The results published in the litera- 
ture indicate that it is necessary to combine some of these 
methods in order to arrive at  high quality solutions, par- 
ticularly for large problem instances. For example, local 
search has been used in [7], [8], [18], [33], [34] to improve 
genetic algorithms (GAS) for the TSP. As a consequence, 

Gorges-Schleuter and Muhlenbein [15], [16], [27] have pro- 
posed a GA where all individuals of the population are local 
minima with respect to the embedded local search method. 
Ulder et al. [35] compared this genetic local search (GLS) 
approach with other heuristics and observed that GLS is 
superior to simulated annealing as well as multi-start lo- 
cal search. In [ll], [12] we proposed new operators for GLS 
which are designed to produce better (locally optimal) indi- 
viduals from existing ones, with the ability to find optimal 
solutions for symmetric TSP instances of up to 1400 cities. 

In this paper, the GLS algorithms for the symmetric and 
the asymmetric TSP proposed in [ll], [12] are revisited. 
Since the central component of the algorithms is the local 
search operator, and improving the efficiency of this opera- 
tor consequently improves the overall performance, we will 
take a closer look at  the hill-climbers used in our approach 
and discuss how they can be tuned for speed as well as 
for quality. The results obtained indicate that compared 
to our winning algorithm of the First International Con- 
test on  Evolutionary Optimization held as part of the 1996 
IEEE International Conference on  Evolutionary Compu- 
tation in Nagoya, Japan [4], the computation times could 
be reduced significantly, and the solution qualities could 
further be improved. 

The paper is organized as follows. Section 2 gives a gen- 
eral description of the GLS approach to the TSP. Section 
3 presents genetic operators for the symmetric TSP, while 
section 4 is devoted to the asymmetric case. Section 5 
summarizes the improvements made in our implementa- 
tion. The computational results are presented in section 6. 
Section 7 concludes the paper and outlines areas for future 
research. 

11. THE GLS ALGORITHM FOR THE TSP 

In the GLS algorithm, all individuals represent local min- 
ima. Therefore, after applying a genetic operator, the local 
search procedure must be applied to the resulting individ- 
ual. The GLS algorithm proposed to solve the TSP is pre- 
sented in Fig. 1. 

First, the initial population is created by a tour construc- 
tion technique, which in our case is the nearest-neighbor 
heuristic [22]. Then, a suitable local search procedure is 
applied to each individual. In the main loop, crossover 
and mutation operators are applied to randomly selected 
individuals a predefined number of times. To achieve local 
optimality, the hill-climber is employed after each applica- 
tion of an operator, and the newly created individuals are 
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procedure GLS; 

begin 
initialize population P with a construction heuristic; 
foreach individual i E P do i := Local-Search(i); 
repeat 

for i := 1 to #crossouers do 
begin 

select two parents i,, ib E P randomly; 
i, := DPX(i,,ib); 
i, := Local-Search(&); 
add individual zc to P ;  

end; 

begin 
for i := 1 to #mutations do 

select an individual i E P randomly; 
i, := Mutate(i); 
i, := Local-Search(&); 
add individual i, to P ;  

end; 
P := select(P); 

until P converged; 
end; 

Fig. 1. The GLS Algorithm for the TSP 

inserted into the population. In the last step of each gen- 
eration, the population is reduced to its initial size by first 
eliminating old individuals which are similar to the newly 
created individuals, and then selecting the individuals with 
the highest fitness until the population size is reached. 

Unlike classical genetic algorithms, where mutation is 
refered to as a background operator, GLS makes equal 
use of both crossover and mutation operators. The goal 
of the operators used in conjunction with the local search 
method is to produce hopefully better individuals from ex- 
isting ones by utilizing the information already contained 
in the current population. The approach is motivated by 
the observation [5], [28] that near-optimum and optimal 
solutions are quite similar: they have many edges in com- 
mon. To describe the similarity of solutions more precisely, 
we define the distance between tours corresponding to [6] ,  
[24]. Let G = (V, E )  be the graph of a given TSP instance 
and TI , TZ feasible tours, then the distance D between the 
tours is defined as 

Since optima and near-optimum local minima lie rela- 
tively close to each other in the search space, it seems to 
be reasonable to explore the regions around the best solu- 
tions collected so far during the search. 

As described in [ll], [12], crossover and mutation per- 
form “jumps” in the search space, and it is difficult to find 
a diversification scheme that leads to promising regions of 
the search space without degrading to an uncontrolled ran- 
dom walk. 

The crossover introduced in [ l l ] ,  [12] is called the dis- 
tance preserving crossover (DPX). Here, a child i, is cre- 
ated by copying the edges to the offspring that are found 
in both parents ia and i b ,  and reconnecting the resulting 
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tour fragments without reinserting the edges that are dif- 
ferent in the parents. Thus, the child has equal distance to 
both parents, and this distance is also equal to the distance 
between the parents themselves: 

D(icl ia) 1 D(ic,  i b )  = D(ia ,  ib). (3) 

The DPX is motivated by the observation of Boese [5] ,  
that for the symmetric 532-cities instance of Padberg and 
Rinaldi [29] the optimum lies more or less in a single valley 
of near-optimum local minima and the average distance 
between these near-optimum solutions is similar to their 
distance to the optimum. Another motivation is that by 
identifying the edges that are not shared by the parents, the 
search will be focused on particular regions of the search 
space. By inheriting the shared edges, we assume that 
these edges are likely to be contained in the optimum as 
well, because they have been proven to be “building blocks” 
during the search. With these ideas in mind, the proposed 
crossover operator neither depends on a particular problem 
(as long as the distance criterion (3) can be fulfilled), nor 
on the type of local search subsequently used. 

On the other hand, the mutation operator is highly de- 
pending on the hill-climber chosen. Since it is a unary 
operator, we must decide at  a single point in the search 
space which region to explore next. It is reasonable to re- 
place only a few edges in the individual in a way that the 
permutation will not be reversed by the subsequent local 
search. Therefore, some knowledge about the incorporated 
hill-climber might be helpful. 

111. THE OPERATORS FOR THE STSP 
The local search method used for symmetric TSP in- 

stances is the variable k-change heuristic suggested by Lin 
and Kernighan [23]. In each step, a varying number of 
edges is exchanged, until no exchange will reduce the tour 
length further, i.e. when a local minimum is reached. This 
heuristic produces quite good results even when applied 
alone. For most instances defined in the TSPLIB [31], the 
average percentage excess is about 2% above the optimum, 
although there are instances with topographical structures 
for which the results are much worse, such as the instance 
f13795 [20]. 

The mutation operator used in the symmetric TSP is 
called the non-sequential four-change [23] which has also 
been used in the large step Markov chain algorithm pro- 
posed by Martin et al. [25] and the iterated Lzn-Kernzghan 
heuristic suggested by Johnson [19]. Since in the Lin- 
Kernighan heuristic only sequential changes are performed, 
the effects of this kind of mutation cannot be reversed in 
a single step, and there is a high probability for ending up 
with a new solution after the local search phase. Since only 
four edges are exchanged, most information coded in the 
genotype will be preserved. 

I v .  THE OPERATORS FOR THE ATSP 
In the ATSP, the distance value associated with edge 

( i , j )  is different from the one of edge ( j , i ) ,  such that local 
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search procedures developed for symmetric instances are 
not very effective. The 2-opt algorithm, for instance, tries 
to find pairs of edges for which an exchange results in a 
reduction of the total tour length. For example, consider 
the individual A shown in Fig. 2, which represents a tour 
from city 5 to city 3 to city 7 and so on. 

P 

I U I A: 

U 
C: 

P1 p3 p2 

Fig. 2. Illustration of Inversion and Local Search Operators 

If the exchange of the edges (3,7) and (4,2) by (3,4) and - - 
(7,2) will lead to a shorter tour, the 2-opt algorithm will 
perform the swap by reversing the order of the subpath 
from city 7 to 4, as shown by the tour B in Fig. 2. 

In the ATSP the reversal of the subpath leads to a k- 
change. In the above example, the distance between tour 
A and B is D = 5, because edges (3,4), (4,6), (6, l), (1,7) 
and (7,2) are not contained in tour A .  It is easy to see 
that for the ATSP the minimum distance between tours is 
D = 3. Individual C in Fig. 2 represents a tour with a 
distance D = 3 to tour A. As illustrated, tour C can be 
obtained by swapping subpath P2 and P3 in tour A,  which 
is equivalent to a %opt move. Analogously, it is possible 
to perform a valid 4-opt move by rearranging a tour that 
consists of subpaths PlP2P3P4 in a way that the order of 
the subpaths in the resulting tour is P I P ~ P ~ P ~ .  

The local search procedure used in our GA for the ATSP 
performs both 3-opt and &opt moves. To reduce the run- 
ning time for finding a 4-opt move, information obtained 
from previous iterations of the search is used: the four 
edges to exchange in a step consist of a pair of edges iden- 
tified as candidates in the current step and a pair of edges 
identified in a previous iteration. This enables us to per- 
form Cchanges without increasing the running times com- 
pared to 3-opt without additional 4-changes. 

Mutation is performed by reversing a randomly chosen 
subpath of length 6 analogously to the example shown in 
Fig. 2. Thus, by the reversal of a subpath the mutation 
operator performs a random 7-change on the current tour. 

V.  IMPLEMENTATION ISSUES 
The efficiency of the embedded local search algorithm 

has a large impact on the performance of the entire algo- 
rithm, since about 95% - 99% of the total CPU time is 
spent in the local search procedure. Thus, the main goal 
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is to optimize the local search procedure in order to run 
much faster without losing too much quality. A complete 
enumeration of the neighborhood is not very effective, since 
the size of the k-opt neighborhood grows polynomially with 
k ,  i.e. the neighborhood defined as 

N k o p t ( T )  = {T‘ I D ( T ,  T‘) I k }  (4) 
is of size O(nk) .  Even for small k ,  the computation times 
may increase considerably. To obtain computation times 
that grow subquadratically in practice, a small portion of 
the neighborhood may be inspected where good solutions 
are most likely to be found. This can be achieved by main- 
taining a list of nearest neighbors for each node [20], [32]. 
If an edge in the current tour is considered for replacement, 
only candidates drawn from the nearest neighbor list are 
examined. If the size of the neighbor list is bound by a 
constant, it is possible to identify an improving k-opt move 
associated with a given starting node in constant time, and 
hence the time for checking an improving move is O(n) .  
Further reductions result from performing a fixed radius 
nearest neighbor search, as proposed by Bentley [l], [3]. 

Another mechanism to speed up local search algorithms 
is to incorporate a “don’t look bit” for each node, in order 
to reduce the time for checking the interesting neighbors [l]. 
With the don’t look bit set to  1, the node is not considered 
as a starting point for finding an improving move. Initially, 
all bits are set to 0. If an improving move could not be 
found starting at node i, the don’t look bit for that node is 
set. On the other hand, the don’t look bit will be cleared 
if an improving move has been found that inserts an edge 
incident to node i. 

In our implementation, we use a nearest neighbor list of 
size m = 100 for each node, which is initialized by nearest 
neighbor queries on a two-dimensional binary search tree 
[2] in case of the algorithm for the STSP. In the ATSP, we 
adapted the recursive quicksort algorithm to sort the first 
m entries of the rows of the distance matrix. In both local 
search procedures, a data structure for maintaining don’t 
look bits is incorporated, with the local search for the initial 
population starting with all don’t look bits set to zero. 
After the crossover has been performed, only the don’t look 
bits of the nodes that are incident to  the edges not shared 
by both parents are cleared. Similarly, after mutation, only 
nodes incident to the edges newly included in the tour have 
their don’t look flags set to zero. This focuses the search 
of the hill-climber to  the promising regions of the search 
space and also reduces the time for checking the interesting 
members of the neighborhood. 

Additionally, in the algorithm for the STSP, some 
changes have been made to deal with large instances of 
up to 100.000 cities. Since for large instances it is not POS- 

sible to store the entire distance matrix in main memory, 
the Euclidean distances are computed online. Since this is 
a rather expensive operation, a distance cache of size 3 .  n 
is maintained, where the first n entries are used to cache 
the distances of the edges in the current tour and the re- 
maining 2 . n entries are organized as described in [2]. The 
average hit rate of the cache varies between 80% and 95%. 
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STSP Results 
instance I gen I best I average I t i n s  

&48p ' 700 ' 14422 ( 0.00 % j  ' 14451.2 ( 0.20 % j  ' 72 
f t 7 0  40 38673 ( 0.00 %) 38674.2 ( 0.00 %) 111 . 
kro124p 200 36230 ( 0.00 %) 36231.5 ( 0.00 %) 35 
f t v l 7 0  400 2755 ( 0.00 %) 2762.2 ( 0.26 %) 100 

ATSP Results 
instance I rren I best I average I t in s " ,  " I  

I P43 I 60 I 5620 (0.00 %I I 5620.1 f 0.00 %i I 11 I 

Fig. 3. The Computational Results 

Another target for optimizations is the Lin-Kernighan 
heuristic itself. Most of the computation time is spent 
in submoves that will be reversed later in the algorithm. 
Hence, it is profitable to  distinguish between tentative and 
permanent moves. Applegate and Cook have proposed a 
segment tree data structure for efficiently managing tenta- 
tive moves, as described in [lo]. Our approach is similar: 
instead of using a segment tree, we operate on a segment 
list that represents a tentative tour. Operations perform- 
ing a flip on this tentative tour are highly optimized, such 
that a high performance gain compared to the simple array 
representation can be achieved. The running times for all 
operations are in 0(1), since the data structure is limited 
to perform 20 flips only. In practice, this has been proven 
to be sufficient. 

VI. RESULTS 

The algorithms presented in this paper have been im- 
plemented in C++ on a DEC Alphastation 255 running 
Digital Unix V4. 

Detailed information about the development of the solu- 
tion qualities in each of the experiments conducted is given 
in the appendix. Fig. 3 summarizes the results obtained for 
several STSP and ATSP instances taken from the TSPLIB 
[31]. In the figure, gen denotes the number of generations 
performed, best shows the length of the best tour found to- 
gether with its deviation from the known optimum in per- 
cent, average displays the same information for the average 
of 20 runs, and t in s shows the average computation times 
(in seconds) for a single run on a DEC Alpha CPU with 
233 MHz. For the instances f 11577 and f 13795, we pro- 
vide the deviation from the best known lower bound. For 
the STSP instances, a population size of P = 20 was used 
in our experiments, except for d198 where the population 
contained P = 10 individuals. All runs on the asymmetric 
instances were performed with P = 40. For both the STSP 
and the ATSP, we used a mutation and a crossover rate of 
0.5, i.e. P individuals were created in each iteration. 

The computation times could be reduced significantly 
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compared to the results in [ll] for all STSP instances. Bet- 
ter qualities could be achieved for all instances except for 
instance d198. Obviously, the average quality ( 0.00 %) 
cannot be improved further. 

For example, the average running times for the 783-cities 
problem rat783 were reduced from 14880 seconds to 424 
seconds (a factor of more than 35), while the quality of 
the results increased: the average percentage excess over 
the optimum has dropped from 0.04% to 0.0023%. Re- 
markable results have also been obtained for the smallest 
yet unsolved problem defined in the TSPLIB, f 11577. The 
average time for a local search could be reduced by a factor 
of 48 to 2.12 seconds. This enabled us to run the algorithm 
for an increased number of generations, ending up with a 
best final tour length of 22249, which is the best known 
upper bound for this instance. The gain in quality for the 
average final tour length is also worth mentioning: the per- 
centage excess over the lower bound dropped from 0.46% 
to 0.21%. 

The optimum for instance f 13795 is known to lie in the 
interval [28723,28772]. The best tour found by our algo- 
rithm for this instance has a tour length of 0.014% above 
the upper bound. The relatively high average tour length 
after 400 generations may be improved by running the al- 
gorithm for a longer time. 

The reasons for the strong increases of the computa- 
tion times for the instances f11577 and f13795 are not 
the problem sizes itself, but the characteristics of these in- 
stances. They are pathologically clustered, making it much 
harder to optimize them by neighborhood search. For ex- 
ample, for another problem of comparable size (pcb3038), 
the average running time for a local search is about 0.30 
seconds and thus more than a factor of 7 faster than in the 
case of f 13795 (2.22 seconds). 

For the ATSP, the results in Fig. 3 represent a consid- 
erable performance gain in comparison to the results pre- 
sented in [ l l ] .  For all instances except ry48p, the average 
quality could be improved. For the largest instance investi- 
gated, the average percentage excess over the optimum has 
dropped from 0.40% to 0.26% using less than half of the 
computation time. An even higher reduction of the com- 
putation time could be achieved for problem ft70, which 
is known to be a relatively hard problem for a hill-climber 
[26]. In this case, the new algorithm is about 5.75 times 
faster, and in almost all runs the optimum is found. With 
the discussed modifications, the running times for all ATSP 
instances are less than two minutes. 

The improvements of our algorithms have led to much 
faster local search procedures which produce slightly worse 
tours than before. However, for both types of instances it 
has proven to be more effective to produce more genera- 
tions in the GA than to use more powerful embedded local 
search methods. 

VII. CONCLUSIONS 

In this paper, improvements of GLS algorithms for the 
TSP have been presented. The results presented for sev- 
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era1 symmetric and asymmetric TSP instances have shown 
that some fine tuning of the local search procedures in the 
GLS algorithms has a significant impact on the overall per- 
formance. Sophisticated data structures and hill-climbers 
with subquadratic runtime characteristics are the keys to 
efficient neighborhood searches, in particular if large prob- 
lem instances are considered. The experiments conducted 
have demonstrated that a slightly weaker but considerably 
faster local search method has the advantage of getting ex- 
ecuted more often in a given time, which leads to a more 
robust search algorithm that is able to carefully explore the 
search space. 

There are several issues for future research, such as in- 
vestigating the effects of a parallel implementation of the 
GLS approach, analyzing the individual performance gains 
provided by the crossover and mutation operators, and con- 
ducting further tests of the algorithms on other possibly 
more complex TSP instances. 
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APPENDIX 

I. COMPUTATIONAL RESULTS FOR THE STSP 11. COMPUTATIONAL RESULTS FOR THE ATSP 

eval/gen best average t in s 
20/ 1 15787 ( 0.04 %) 15797.6 ( 0.11 %) 8 
SO/ 5 15780 ( 0.00 %) 15782.2 ( 0.01 %) 30 

' 210/ 20 15780 ( 0.00 %) 15780.2 ( 0.00 %) 87 
410/ 40 15780 0.00 %\ 15780.1 0.00 %) 163 

l l O /  10 15780 ( 0.00 %) 15780.5 ( 0.00 %) 49 

I dlgF4. t~~  1 

eval / gen 
40/ 1 
220/ 10 
420/ 20 
820/ 40 
1220/ 60 

best . average t in s 
42029 ( 0.00 %) 42244.5 ( 0.51 %) 5 
42029 ( 0.00 %) 42083.3 ( 0.13 %) 39 
42029 ( 0.00 %) 42061.2 ( 0.08 %) 68 
42029 ( 0.00 %) 42040.4 ( 0.03 %) 118 
42029 ( 0.00 %) 42029.0 ( 0.00 %) 168 

eval/gen 
40/ 1 
220/ 10 
820/ 40 
2020/100 
2820/140 

best average t i n s  
50950 ( 0.34 %) 51075.7 ( 0.59 %) 2 
50833 ( 0.11 %) 50889.6 ( 0.22 %) 20 
50778 ( 0.00 %) 50791.4 ( 0.03 %) 65 
50778 ( 0.00 %) 50780.1 ( 0.00 %) 135 
50778 ( 0.00 %) 50778.0 ( 0.00 %) 178 

step/gen 

240/ 5 
440/ 10 
840/ 20 
1640/ 40 

80/ 1 
best average t in s 

38736 ( 0.16 %) 38842.7 ( 0.44 %) 23 
41 38677 ( 0.01 %) 

38675 ( 0.01 %) 38680.5 ( 0.02 %) 68 
111 38673 ( 0.00 %) 

38782 ( 0.28 %) 39072.9 ( 1.03 %) 4 

38737.6 ( 0.17 %) 

38674.2 ( 0.00 %) 

step/gen 
80/ 1 
840/ 20 
1640/ 40 

16040/400 
4040/100 

I krol24u.atsn I 

best average t in s 
2866 ( 4.03 %) 2936.1 ( 6.57 %) 1 
2800 ( 1.63 %) 2818.7 ( 2.31 %) 7 
2767 ( 0.44 %) 2780.7 ( 0.93 %) 12 

2755 ( 0.00 %) 2762.2 ( 0.26 %) 100 
2755 ( 0.00 %) 2764.3 ( 0.34 %) 27 

I step/gen 1 best average 

33 
35 

eval/gen 
40/ 1 
820/ 40 
2020/100 
4020/200 
6020/300 

best average t in s 

8876 ( 0.80 %) 8893.5 ( 0.99 %) 3 
8815 ( 0.10 %) 8820.2 ( 0.16 %) 90 
8806 ( 0.00 %) 8809.4 ( 0.04 %) 174 
8806 ( 0.00 %) 8807.3 ( 0.01 %) 298 
8806 ( 0.00 %) 8806.2 ( 0.00 %) 424 

eval/gen 
40/ 1 
820/ 40 
2020/100 
4020/200 
6020/300 

Fig. 4. The Results for Symmetric TSP Instances 

best average t in s 
22362 ( 0.71 %) 22527.2 ( 1.46 %) 115 
22257 ( 0.24 %) 22270.0 ( 0.30 %) 2582 
22250 ( 0.21 %) 22254.7 ( 0.23 %) 5134 
22249 ( 0.20 %) 22251.0 ( 0.21 %) 8981 
22249 ( 0.20 %) 22250.5 ( 0.21 %) 12762 
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