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Abstract. In this paper an environment is established for a quantita-
tive analysis of separate and combined performance of local search-
ers and standard genetic algorithm. Well researched and controlled 
Euclidean Travelling Salesman Problem examines the impact of 
grafting a 2-opt based local searcher into the standard genetic algo-
rithm for solving the Travelling Salesman Problem with Euclidean 
distance. Standard genetic algorithms are known to be rather slow, 
while 2-opt search applied to the Travelling Salesman Problem 
quickly gives results that are far from optimal. We propose a strate-
gy to graft a 2-opt local searcher into a genetic algorithm, after re-
combination, to optimize each offspring’s genomes. Genetic algo-
rithm provides new search areas, while 2-opt improves convergence. 
We tested our algorithm on examples from TSPLIB and proved that 
this method combines good qualities from both methods applied, 
significantly outperforming each of them. 

Keywords. Genetic Algorithms, Grafted Genetic Algorithm, Trav-
eling Salesman Problem (TSP), Memetic Algorithms (MA). 
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1    Introduction 

Genetic Algorithms (GA) use some mechanisms inspired by biological 
evolution [8]. They are applied on a finite set of individuals called popula-
tion. Each individual in a population represents one of the feasible solu-
tions of the search space. Mapping between genetic codes and the search 
space is called encoding and can be binary or over some alphabet of higher 
cardinality. Good choice of encoding is a basic condition for successful 
application of a genetic algorithm. Each individual in the population is as-
signed a value called fitness. Fitness represents a relative indicator of qual-
ity of an individual compared to other individuals in the population. Selec-
tion operator chooses individuals from the current population and takes the 
ones that are transferred to the next generation. Thereby, individuals with 
better fitness are more likely to survive in the population’s next generation. 
Recombination operator combines parts of genetic code of the individuals 
(parents) and that process brings codes of new individuals (offspring). 
Such a mixing of genetic material enables that well-fitted individuals or 
their relatively good genes give even better offspring. By a successive ap-
plication of selection and crossover, the diversity of genetic material can 
be decreased which leads to a premature convergence in a local optimum 
which may be far from a global one. The components of the genetic algo-
rithm software system are: Genotype, Fitness function, Recombinator, Se-
lector, Mater, Replacer, Terminator, and in our system a Local searcher 
which is new extended component. 
The 2-opt is a simple local search algorithm for solving the Travelling 
Salesman Problem. The main idea behind it is to take a route that crosses 
itself and reorder it so that it does not. The  basic  step  of  2-opt  is  delete  
two  edges  from  a  tour  and  reconnect the remaining  fragments of  the  
tour by adding  two new edges. Once we choose the two edges to delete, 
we do not have a choice about which edges to add – there is only one way 
to add new edges that results in a valid tour. The 2-opt algorithm repeated-
ly looks for 2-opt moves that decrease the cost of the tour. A 2-opt move 
decreases the cost of a tour when the sum of the lengths of the two deleted 
edges is greater than the sum of the lengths of the two deleted edges. A 2-
opt move  is  the  same as  inverting a  subsequence of  cities  in  the  tour.  
     Here is a pseudcode for the 2-opt local search algorithm: 
 
current_tour := create_random_initial_tour()  

repeat   

    modified_tour := apply_2opt_move(current_tour)  

    if length(modified_tour) < length(current_tour)  
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       then current_tour := modified_tour  

until no further improvement or a specified number of iterations  

   
Although the 2-opt algorithm performs well and can be applied to Travel-
ing Salesman Problems  with  many  cities [4],  it  has  a  serious  draw-
back since it  can  quickly become  stuck  in  a local minimum. 
     In the Traveling Salesman Problem (TSP) a set {C1, C2, ⋯ CN) of cit-
ies is considered and for each pair {Ci,Cj} of distinct cities a distance 
d(Ci,Cj) is given. The goal is to find an ordering π of the cities that mini-
mizes the quantity 

         (1) 
 
     This quantity is referred to as the tour length since it is the length of the 
tour a salesman would make when visiting the cities in the order specified 
by the permutation, returning at the end to the initial city. We will concen-
trate in this paper on the symmetric TSP in which the distances satisfy 
d(C_i,C_j  )=d(C_j,C_i ) for 1≤i,j≤N and more specificaly to the Euclidean 
distance. While the TSP is known to be NP-hard [6] even under substantial 
restrictions, the case with Euclidean distance is well researched and there 
are many excellent algorithms which perform well even on very large cas-
es [6]. 
     Genetic algorithms have been successfully applied to the TSP, but for 
restricted versions of the TSP, such as one with the Euclidean distance, 
they are very slow in convergence and more efficient methods are known 
[5]. The genetic algorithm`s considered in this paper are hybrid evolution-
ary algorithms incorporating local search which have been referred to as 
memetic algorithms (MA) [13], [14], [16], genetic local-search methods 
[17], Lamarckian genetic algorithms [15], Lamarckian search, and Bald-
wian search [12]. 

2 Grafted GA for the TSP 

Grafted genetic algorithm. Grafting in botanic is when the tissues of one 
plant are affixed to the tissues of another. To speed maturity of hybrids in 
fruit tree breeding programs, hybrid seedlings may take ten or more years 
to flower and fruit on their own roots. Grafting can reduce the time to 
flowering and shorten the breeding program. 
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     Local Searcher is an extension of the conventional genetic algorithm as 
it does not need to make use of genetic components. It facilitates the opti-
mization of individual genomes outside the evolution process. There are 
many implementations of local searchers [5], [6], some even in hardware 
[9]. In our algorithm, after the Recombination has been applied, a Local 
Searcher is used to optimize every single offspring genome. Because of the 
usage of such external optimizer the genetic algorithm is no longer “pure” 
and therefore we then speak of a grafted genetic algorithm [2], [3]. This 
form of optimization is of a local kind. It alters the genome by heuristically 
changing the solution. When approximating a TSP instance, a 2-opt local 
optimization technique is applied to make modifications to a genome so as 
to create better genomes at a higher rate. These are much desired because 
the evolution process can be quite slow with respect to the desired results. 
Furthermore  it has always been the case in optimization that incorporating 
problem specific knowledge (not only through local optimizations, but also 
in defining the evolutionary operators) is required to gain better results. 
     A genome represents a potential solution to a problem. How the solu-
tion information is coded within a genome is determined by the genotype. 
TSP Numbered List is a representation of a tour in the TSP by means of a 
list in which the locations are identified by numbers.  
     The fitness function (FF) has a specific task in a genetic algorithm and 
plays a specific role in terms of the optimization problem description. The 
fitness function rates the genomes and therefore the solutions according to 
their fitness. Solution for our TSP problem is a Hamiltonian cycle and the 
fitness value is the sum of the weights of the edges contained in the cycle.  

 
    Edge map crossover is an implementation of the recombination opera-
tor. It makes use of a so called edge map. Edge map is a table in which 
each location is placed. For each location there is a list in which the neigh-
bouring locations are listed with this location. Recombination is then es-
tablished as follows: 
 

1. Choose the first location of one of both parents to be the current 
location. 

2. Remove the current location from the edge map lists.  
3. If the current location still has remaining edges, go to step 4, 

otherwise go to step 5.  
4. Choose the new current location from the edge map lists of the 

current location as the one with the shortest edge map list.  
5. If there are remaining locations, choose the one with the shortest edge 

map list to be the current location and return to step 2. 
Example:  Parents: 1-2-3-4-5-6; 2-4-3-1-5-6 
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Edge map: 1) 2 6 3 5;  2) 1 3 4 6;  3) 2 4 1; 4) 3 5 2; 5) 4 6 1;  6) 1 5 2 6 
 

1. Random choice: 2. 
2. Next candidates: 1 3 4 6, choose from 3 4 6 (same #edges), choose 3. 
3. Next candidates: 1 4 (edge list 4 < edge list 1), choose 4. 
4. Next candidate: 5, choose 5. 
5. Next candidate:  1 6 (tie breaking) choose 1 
6. Next candidate; 6, choose 6. 

 
Offspring: 2-3-4-5-1-6 
 
    Distance preserving crossover is another implementation of the re-
combination operator. It attempts to create a new tour with the same dis-
tance to both parents. In order to establish this, the content of the first par-
ent is copied to the offspring and all edges that do not occur in the second 
parent are removed. The resulting fragments are reconnected without mak-
ing use of non-overlapping edges of the parents. If edge (i, j) has been de-
stroyed, the nearest available neighbor k of i from the remaining frag-
ments, is selected and the edge (i, k) is added to the tour [7]. 
 
Example:  Parents: 5-3-9-1-2-8-0-6-7-4; 1-2-5-3-9-4-8-6-0-7 
 
Fragments: 5-3-9|1-2|8|0-6|7|4 
 
Offspring: 6-0-5-3-9-8-7-2-1-4 
     Tournament Selector places groups of genomes from the population to-
gether, creating the groups from top to bottom with respect to the enumera-
tive ordering of the genomes in the population and selects the best of the 
genomes within this group. This is repeated until the required amount of 
genomes is selected. The selection size is 400, and tournament size is 2. 
The Random Mater is a simple way of mating parents. It mates the parents 
as enumerated in the population at random using the mating size to create 
groups until no more groups can be created. The grouping size is 2. The 
new offspring only replacer is the implementation of the classical replace-
ment strategy that simply only allows the offspring to survive. Thus the 
genomes from the next generation replace the entire current population. 
The equality terminator for all equal genomes  implements the termination 
condition specifying that the genetic algorithm should terminate when all 
genomes in the population are identical-all equal genomes.  
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     The Local Searcher is an extension to the conventional genetic algo-
rithm as it need not make use of genetic operators. It facilitates the optimi-
zation of individual genomes outside the evolution process. After the Re-
combination has been applied, a Local Searcher is used to optimize every 
single offspring genome. The Local Searcher has no further knowledge on 
the execution of the genetic algorithm in the larger setting. The system will 
provide it with the genome it needs to locally optimize when needed. Fig. 
1 presents the pseudo code for the algorithm. 
 
t=0 
initialize(P(t)) 
evaluate(P(t)) 
while(not terminate(P(t))) do 
   sel=select(P(t)) 
   mat=mate(sel) 
   rec=for each mated collection m∈mat do  
recombination(r) 
   loc=for each genome g in each recombined collection 
r∈rec do local search(l) 
   rep=replace(loc, P(t)) 
   P(t+1)=select(rep) 
   evaluate(P(t+1)) 
   t=t+1 

 
Figure 1 Algorithm Code 

 
     The 2-opt Hybrid searcher is a local optimizer for the TSP that has been 
grafted into the standard genetic algorithm. This local optimizer performs 
the 2-opt heuristic that exchanges edges to reduce the length of a tour. An 
exchange step consists of removing two edges from the current tour and 
reconnecting the resulting two paths in the best possible way. (Fig. 2) 

 

 
 

Figure 2 Exchange step of 2-opt algorithm 
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3.1 Experiment 

For testing our strategy and comparing it to other solutions we used the in-
stances of symmetric traveling salesman problem which can be found on 
TSPLIB. We deliberately used well known problem (TSP) and relatively 
small instances for which best solutions are known since the goal of this 
research is not to find a better algorithm for the symmetric TSP, but rather 
to compare on well controlled environment the impact of grafting a genetic 
algorithm.  Altogether 20 instances have been tried out, with different 
complexity and range from 14 to 150 cities per instance. 

 We compared our method (grafted genetic algorithm – GGA), separate-
ly in one case with edge map crossover (GGAemc) and in another case 
with a distance preserving crossover (GGAdpc) with four other methods. 
As the upper bound for the quality of solution we used the above men-
tioned Greedy Heuristic. For the lower bound for the quality of solution we 
used exact solutions, global minima, obtained by Concorde. Then we com-
pared our grafted method with a pure 2-opt algorithm and pure genetic al-
gorithm.  
     For Greedy Heuristic and the pure 2-opt Heuristic the running time is in 
a range from 0.5 to 1.5 seconds. All tests were conducted on a laptop com-
puter with AMD 2GHz processor, with Windows 7. In this research abso-
lute times were not of crucial importance, we were only interested in rela-
tive performance of tested algorithms. 

3.2 Results 

All the results are summarized in Table 1. Twenty well known cases from 
TSPLIB were used for testing. The names of these cases are in the first 
column and the name always contains the size of the problem, i.e. the 
number of cities (which are between 14 and 150). 

     The last two columns are exact solutions (global minima) obtained 
by Concorde, together with execution times. A well known problem with 
moderate sized examples and tools to get optimal solutions were selected, 
recall that a goal of this research is not to improve solutions for difficult 
problems but to compare and quantitatively examine  the effects of graft-
ing local searches (in this case 2-opt based) to standard genetic algorithm. 
Such knowledge can be used to fine tune and calibrate a hybrid system 
which can then be used on large cases. These last two columns are used as 
a reference for all other tests. 
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     The second column in Table 1 represents lower bound for the quality 
of solution. It is a simple Greedy Heuristic described in Section 1. It is fast, 
but very unsophisticated and any reasonable algorithm should do better 
than that. The Greedy Heuristic gives results that are about 15% (except 
for some very small cases) worse than the optimal solution. The column ti-
tled quality shows by how many percent is the solution produced by this 
algorithm worse than the optimal solution. 0% in this column means that 
the algorithm found the best solution. The running times of the algorithm 
are from 0.2 to 2.3 in seconds. 

     The third column in the Table 1 corresponds to the pure 2-opt algo-
rithm. As expected, it also gives quick but far from optimal solutions. It 
quickly finds a local minimum, but it is unable to broaden the search to 
find another local minimum. However, 2-opt algorithm is superior to 
Greedy algorithm, the quality of the solution, with the similar running 
times from 0.2 to 2.5 seconds, is on average about 8% worse than optimal. 

     The fourth column in the Table 1 corresponds to the pure Genetic 
Algorithm. The running time, as expected, is significantly increased. While 
our GGA algorithm reached optimal solution below one second or few se-
conds (0.6 to 17.1 seconds), the running time for pure genetic algorithm 
was from 3.4 seconds to 100 seconds which was time-limit. In 12 out of 20 
cases no optimal solution was found within that time limit, but in 8 cases 
an optimal solution was found and the middle column indicates in which 
generation that happened. For 12 cases where optimal solution was not 
found, the quality of found solution is expressed as for previous cases in 
percents above the optimal solution. 
     The fifth column in Table 1 describes results obtained by our grafted 
algorithm, which is programmed with edge map crossover as recombina-
tion operator (GGAemc). In 17 out of 20 considered cases an optimal solu-
tion was found. Remaining three instances differ from optimal solution in 
0.01, 0.18 and 0.22 percent. The solutions were found in relatively few 
generations and very fast. Execution times were 0.6 to 17.1 seconds. 

The sixth column in Table 1 corresponds to our grafted genetic algo-
rithm which contains a distance preserving crossover as recombination op-
erator (GGAdpc). In 11 out of 20 considered cases an optimal solution was 
found. In remained 9 cases, delivered solutions differ from optimal in 
range from 0.13 to 0.32 percent. The running time and number of genera-
tions of GGAdpc, in comparison with GGAemc, are slightly lesser, partic-
ularly in the lowermost part of the table which represents more complex 
instances. The difference in the quality on the other side is in the hand of 
GGAemc for the same considered cases. 



 
 

Table 1. Five techniques for solving Euclidean TSP 

Name Greedy 2-opt GAemc GAdpc GGAemc GGAdpc Concorde 
  quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time 

burma14 8.32% 5.71% 0% 74 3.4 0% 81 3.5 0% 7 0.6 0% 6 0.5 3323 0.1 
ulysses16 10.42% 7.15% 0% 136 4.1 0% 125 4.4 0% 9 0.7 0% 9 0.7 6859 0.2 
ulysses22 12.54% 7.87% 0% 1267 14.7 0% 1328 16.4 0% 8 0.6 0% 8 0.7 7013 0.2 
bayg29 13.37% 6.38% 0% 1345 19.4 0% 1137 17.6 0% 13 1.3 0% 14 1.4 1610 0.3 
bays29 12.87% 5.37% 0% 2185 29.2 0% 2643 34.1 0% 12 1.2 0% 12 1.2 2020 0.3 
dantzig42 14.06% 7.11% 0% 4704 79.8 0% 4232 74.6 0% 10 1.3 0% 9 1.3 699 0.5 
att48 13.98% 8.47% 0% 4807 85.2 0% 5213 91.3 0% 22 2.2 0% 23 2.3 33522 0.6 
eil51 15.24% 7.67% 4.21% 5482 100.0+ 5.23% 5489 100.0+ 0% 33 6 0% 30 6.1 426 0.3 
berlin52 14.82% 7.45% 0% 2037 33.7 4.92% 5021 100.0+ 0% 15 1.7 0% 15 1.7 7542 0.4 
st70 13.17% 7.84% 5.12% 5259 100.0+ 5.72% 5198 100.0+ 0% 20 5.1 0% 19 5.1 675 0.5 
eil76 14.47% 8.15% 6.56% 5347 100.0+ 7.24% 5298 100.0+ 0% 53 9.1 0.19% 49 9.1 538 1.3 
pr76 13.96% 9.95% 4.18% 5218 100.0+ 5.36% 5191 100.0+ 0% 42 7.4 0% 43 7.4 108159 1.2 
gr96 16.32% 7.14% 4.98% 5191 100.0+ 5.71% 5090 100.0+ 0% 73 12 0.13% 73 12 55209 1.6 
rat99 14.79% 7.41% 5.31% 5114 100.0+ 7.12% 5011 100.0+ 0% 74 13 0.17% 70 13 1211 1.7 
kroA100 12.37% 8.07% 5.12% 5072 100.0+ 6.58% 4971 100.0+ 0% 24 12 0.18% 22 12 21282 1.7 
kroB100 16.58% 7.19% 6.14% 5041 100.0+ 5.92% 4816 100.0+ 0% 39 13 0.21% 36 13 22141 1.7 
kroC100 10.47% 11.19% 4.87% 5121 100.0+ 6.78% 4923 100.0+ 0.18% 34 13 0.19% 28 13 20749 1.8 
kroD100 14.81% 7.74% 5.07% 4976 100.0+ 8.12% 4951 100.0+ 0% 31 13 0.29% 25 13 21294 1.5 
lin105 16.60% 9.85% 6.72% 4756 100.0+ 6.51% 4803 100.0+ 0.01% 26 9.9 0.17% 25 9.7 14379 1.3 
ch150 19.62% 11.72% 7.22% 4512 100.0+ 8.77% 4460 100.0+ 0.22% 88 17 0.32% 82 17 6528 7 

                 



 

 

1.5 Conclusions 

The goal of this paper was to investigate the impact of grafting a 2-opt 
based local searcher into the standard genetic algorithm, GGAemc and 
GGAdpc, for solving the Travelling Salesman Problem with Euclidean dis-
tance. It is known that genetic algorithms are very successful when imple-
mented for many NP-hard problems. However, they are much more effec-
tive if some specific knowledge about particular problem is utilized. The 
TSP is well researched problem with many such improvements, especially 
when the restricted version of the problem with Euclidean distance is con-
sidered. In that controlled environment we compared two direct tech-
niques, a genetic algorithm and a 2-opt algorithm with our grafted genetic 
algorithms. Exact solution from Concorde and lower bound on quality, 
Greedy algorithm were added for better comparison. Quantitative results 
on test cases from TSPLIB show that grafted algorithms have new quality. 
Even when both components have serious drawbacks, their grafted combi-
nations exhibits excellent behaviour. Further calibration of this system will 
include measuring the optimal blend of two components for larger test cas-
es. The future research will focus on a new heuristic algorithm for making 
an initial tour of Lin-Kernighan heuristic, which is known to be one of the 
most successful heuristics for the TSP. 
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