

Quantitative Analysis of Separate and Combined
Performance of Local Searcher and Genetic
Algorithm

M. Djordjevic, A. Brodnik

Faculty of Mathematics, Natural Sciences and Information Technologies,
University of Primorska, Koper, Glagoljaska 8, 6000, Koper
milan.djordjevic@student.upr.si
Faculty of Mathematics, Natural Sciences and Information Technologies,
University of Primorska, Koper, Glagoljaska 8, 6000, Koper
andrej.brodnik@upr.si

Abstract. In this paper an environment is established for a quantita-
tive analysis of separate and combined performance of local search-
ers and standard genetic algorithm. Well researched and controlled
Euclidean Travelling Salesman Problem examines the impact of
grafting a 2-opt based local searcher into the standard genetic algo-
rithm for solving the Travelling Salesman Problem with Euclidean
distance. Standard genetic algorithms are known to be rather slow,
while 2-opt search applied to the Travelling Salesman Problem
quickly gives results that are far from optimal. We propose a strate-
gy to graft a 2-opt local searcher into a genetic algorithm, after re-
combination, to optimize each offspring’s genomes. Genetic algo-
rithm provides new search areas, while 2-opt improves convergence.
We tested our algorithm on examples from TSPLIB and proved that
this method combines good qualities from both methods applied,
significantly outperforming each of them.

Keywords. Genetic Algorithms, Grafted Genetic Algorithm, Trav-
eling Salesman Problem (TSP), Memetic Algorithms (MA).

2 1

1

2

2 M. Djordjevic, A. Brodnik

1 Introduction

Genetic Algorithms (GA) use some mechanisms inspired by biological
evolution [8]. They are applied on a finite set of individuals called popula-
tion. Each individual in a population represents one of the feasible solu-
tions of the search space. Mapping between genetic codes and the search
space is called encoding and can be binary or over some alphabet of higher
cardinality. Good choice of encoding is a basic condition for successful
application of a genetic algorithm. Each individual in the population is as-
signed a value called fitness. Fitness represents a relative indicator of qual-
ity of an individual compared to other individuals in the population. Selec-
tion operator chooses individuals from the current population and takes the
ones that are transferred to the next generation. Thereby, individuals with
better fitness are more likely to survive in the population’s next generation.
Recombination operator combines parts of genetic code of the individuals
(parents) and that process brings codes of new individuals (offspring).
Such a mixing of genetic material enables that well-fitted individuals or
their relatively good genes give even better offspring. By a successive ap-
plication of selection and crossover, the diversity of genetic material can
be decreased which leads to a premature convergence in a local optimum
which may be far from a global one. The components of the genetic algo-
rithm software system are: Genotype, Fitness function, Recombinator, Se-
lector, Mater, Replacer, Terminator, and in our system a Local searcher
which is new extended component.
The 2-opt is a simple local search algorithm for solving the Travelling
Salesman Problem. The main idea behind it is to take a route that crosses
itself and reorder it so that it does not. The basic step of 2-opt is delete
two edges from a tour and reconnect the remaining fragments of the
tour by adding two new edges. Once we choose the two edges to delete,
we do not have a choice about which edges to add – there is only one way
to add new edges that results in a valid tour. The 2-opt algorithm repeated-
ly looks for 2-opt moves that decrease the cost of the tour. A 2-opt move
decreases the cost of a tour when the sum of the lengths of the two deleted
edges is greater than the sum of the lengths of the two deleted edges. A 2-
opt move is the same as inverting a subsequence of cities in the tour.
 Here is a pseudcode for the 2-opt local search algorithm:

current_tour := create_random_initial_tour()

repeat

 modified_tour := apply_2opt_move(current_tour)

 if length(modified_tour) < length(current_tour)

Quantitative Analysis of Separate and Combined Performance of Local Searcher
and Genetic Algorithm 3

 then current_tour := modified_tour

until no further improvement or a specified number of iterations

Although the 2-opt algorithm performs well and can be applied to Travel-
ing Salesman Problems with many cities [4], it has a serious draw-
back since it can quickly become stuck in a local minimum.
 In the Traveling Salesman Problem (TSP) a set {C1, C2, ⋯ CN) of cit-
ies is considered and for each pair {Ci,Cj} of distinct cities a distance
d(Ci,Cj) is given. The goal is to find an ordering π of the cities that mini-
mizes the quantity

 (1)

 This quantity is referred to as the tour length since it is the length of the
tour a salesman would make when visiting the cities in the order specified
by the permutation, returning at the end to the initial city. We will concen-
trate in this paper on the symmetric TSP in which the distances satisfy
d(C_i,C_j)=d(C_j,C_i) for 1≤i,j≤N and more specificaly to the Euclidean
distance. While the TSP is known to be NP-hard [6] even under substantial
restrictions, the case with Euclidean distance is well researched and there
are many excellent algorithms which perform well even on very large cas-
es [6].
 Genetic algorithms have been successfully applied to the TSP, but for
restricted versions of the TSP, such as one with the Euclidean distance,
they are very slow in convergence and more efficient methods are known
[5]. The genetic algorithm`s considered in this paper are hybrid evolution-
ary algorithms incorporating local search which have been referred to as
memetic algorithms (MA) [13], [14], [16], genetic local-search methods
[17], Lamarckian genetic algorithms [15], Lamarckian search, and Bald-
wian search [12].

2 Grafted GA for the TSP

Grafted genetic algorithm. Grafting in botanic is when the tissues of one
plant are affixed to the tissues of another. To speed maturity of hybrids in
fruit tree breeding programs, hybrid seedlings may take ten or more years
to flower and fruit on their own roots. Grafting can reduce the time to
flowering and shorten the breeding program.

4 M. Djordjevic, A. Brodnik

 Local Searcher is an extension of the conventional genetic algorithm as
it does not need to make use of genetic components. It facilitates the opti-
mization of individual genomes outside the evolution process. There are
many implementations of local searchers [5], [6], some even in hardware
[9]. In our algorithm, after the Recombination has been applied, a Local
Searcher is used to optimize every single offspring genome. Because of the
usage of such external optimizer the genetic algorithm is no longer “pure”
and therefore we then speak of a grafted genetic algorithm [2], [3]. This
form of optimization is of a local kind. It alters the genome by heuristically
changing the solution. When approximating a TSP instance, a 2-opt local
optimization technique is applied to make modifications to a genome so as
to create better genomes at a higher rate. These are much desired because
the evolution process can be quite slow with respect to the desired results.
Furthermore it has always been the case in optimization that incorporating
problem specific knowledge (not only through local optimizations, but also
in defining the evolutionary operators) is required to gain better results.
 A genome represents a potential solution to a problem. How the solu-
tion information is coded within a genome is determined by the genotype.
TSP Numbered List is a representation of a tour in the TSP by means of a
list in which the locations are identified by numbers.
 The fitness function (FF) has a specific task in a genetic algorithm and
plays a specific role in terms of the optimization problem description. The
fitness function rates the genomes and therefore the solutions according to
their fitness. Solution for our TSP problem is a Hamiltonian cycle and the
fitness value is the sum of the weights of the edges contained in the cycle.

 Edge map crossover is an implementation of the recombination opera-
tor. It makes use of a so called edge map. Edge map is a table in which
each location is placed. For each location there is a list in which the neigh-
bouring locations are listed with this location. Recombination is then es-
tablished as follows:

1. Choose the first location of one of both parents to be the current
location.

2. Remove the current location from the edge map lists.
3. If the current location still has remaining edges, go to step 4,

otherwise go to step 5.
4. Choose the new current location from the edge map lists of the

current location as the one with the shortest edge map list.
5. If there are remaining locations, choose the one with the shortest edge

map list to be the current location and return to step 2.
Example: Parents: 1-2-3-4-5-6; 2-4-3-1-5-6

Quantitative Analysis of Separate and Combined Performance of Local Searcher
and Genetic Algorithm 5

Edge map: 1) 2 6 3 5; 2) 1 3 4 6; 3) 2 4 1; 4) 3 5 2; 5) 4 6 1; 6) 1 5 2 6

1. Random choice: 2.
2. Next candidates: 1 3 4 6, choose from 3 4 6 (same #edges), choose 3.
3. Next candidates: 1 4 (edge list 4 < edge list 1), choose 4.
4. Next candidate: 5, choose 5.
5. Next candidate: 1 6 (tie breaking) choose 1
6. Next candidate; 6, choose 6.

Offspring: 2-3-4-5-1-6

 Distance preserving crossover is another implementation of the re-
combination operator. It attempts to create a new tour with the same dis-
tance to both parents. In order to establish this, the content of the first par-
ent is copied to the offspring and all edges that do not occur in the second
parent are removed. The resulting fragments are reconnected without mak-
ing use of non-overlapping edges of the parents. If edge (i, j) has been de-
stroyed, the nearest available neighbor k of i from the remaining frag-
ments, is selected and the edge (i, k) is added to the tour [7].

Example: Parents: 5-3-9-1-2-8-0-6-7-4; 1-2-5-3-9-4-8-6-0-7

Fragments: 5-3-9|1-2|8|0-6|7|4

Offspring: 6-0-5-3-9-8-7-2-1-4
 Tournament Selector places groups of genomes from the population to-
gether, creating the groups from top to bottom with respect to the enumera-
tive ordering of the genomes in the population and selects the best of the
genomes within this group. This is repeated until the required amount of
genomes is selected. The selection size is 400, and tournament size is 2.
The Random Mater is a simple way of mating parents. It mates the parents
as enumerated in the population at random using the mating size to create
groups until no more groups can be created. The grouping size is 2. The
new offspring only replacer is the implementation of the classical replace-
ment strategy that simply only allows the offspring to survive. Thus the
genomes from the next generation replace the entire current population.
The equality terminator for all equal genomes implements the termination
condition specifying that the genetic algorithm should terminate when all
genomes in the population are identical-all equal genomes.

6 M. Djordjevic, A. Brodnik

 The Local Searcher is an extension to the conventional genetic algo-
rithm as it need not make use of genetic operators. It facilitates the optimi-
zation of individual genomes outside the evolution process. After the Re-
combination has been applied, a Local Searcher is used to optimize every
single offspring genome. The Local Searcher has no further knowledge on
the execution of the genetic algorithm in the larger setting. The system will
provide it with the genome it needs to locally optimize when needed. Fig.
1 presents the pseudo code for the algorithm.

t=0
initialize(P(t))
evaluate(P(t))
while(not terminate(P(t))) do
 sel=select(P(t))
 mat=mate(sel)
 rec=for each mated collection m∈mat do
recombination(r)
 loc=for each genome g in each recombined collection
r∈rec do local search(l)
 rep=replace(loc, P(t))
 P(t+1)=select(rep)
 evaluate(P(t+1))
 t=t+1

Figure 1 Algorithm Code

 The 2-opt Hybrid searcher is a local optimizer for the TSP that has been
grafted into the standard genetic algorithm. This local optimizer performs
the 2-opt heuristic that exchanges edges to reduce the length of a tour. An
exchange step consists of removing two edges from the current tour and
reconnecting the resulting two paths in the best possible way. (Fig. 2)

Figure 2 Exchange step of 2-opt algorithm

Quantitative Analysis of Separate and Combined Performance of Local Searcher
and Genetic Algorithm 7

3.1 Experiment

For testing our strategy and comparing it to other solutions we used the in-
stances of symmetric traveling salesman problem which can be found on
TSPLIB. We deliberately used well known problem (TSP) and relatively
small instances for which best solutions are known since the goal of this
research is not to find a better algorithm for the symmetric TSP, but rather
to compare on well controlled environment the impact of grafting a genetic
algorithm. Altogether 20 instances have been tried out, with different
complexity and range from 14 to 150 cities per instance.

 We compared our method (grafted genetic algorithm – GGA), separate-
ly in one case with edge map crossover (GGAemc) and in another case
with a distance preserving crossover (GGAdpc) with four other methods.
As the upper bound for the quality of solution we used the above men-
tioned Greedy Heuristic. For the lower bound for the quality of solution we
used exact solutions, global minima, obtained by Concorde. Then we com-
pared our grafted method with a pure 2-opt algorithm and pure genetic al-
gorithm.
 For Greedy Heuristic and the pure 2-opt Heuristic the running time is in
a range from 0.5 to 1.5 seconds. All tests were conducted on a laptop com-
puter with AMD 2GHz processor, with Windows 7. In this research abso-
lute times were not of crucial importance, we were only interested in rela-
tive performance of tested algorithms.

3.2 Results

All the results are summarized in Table 1. Twenty well known cases from
TSPLIB were used for testing. The names of these cases are in the first
column and the name always contains the size of the problem, i.e. the
number of cities (which are between 14 and 150).

 The last two columns are exact solutions (global minima) obtained
by Concorde, together with execution times. A well known problem with
moderate sized examples and tools to get optimal solutions were selected,
recall that a goal of this research is not to improve solutions for difficult
problems but to compare and quantitatively examine the effects of graft-
ing local searches (in this case 2-opt based) to standard genetic algorithm.
Such knowledge can be used to fine tune and calibrate a hybrid system
which can then be used on large cases. These last two columns are used as
a reference for all other tests.

8 M. Djordjevic, A. Brodnik

 The second column in Table 1 represents lower bound for the quality
of solution. It is a simple Greedy Heuristic described in Section 1. It is fast,
but very unsophisticated and any reasonable algorithm should do better
than that. The Greedy Heuristic gives results that are about 15% (except
for some very small cases) worse than the optimal solution. The column ti-
tled quality shows by how many percent is the solution produced by this
algorithm worse than the optimal solution. 0% in this column means that
the algorithm found the best solution. The running times of the algorithm
are from 0.2 to 2.3 in seconds.

 The third column in the Table 1 corresponds to the pure 2-opt algo-
rithm. As expected, it also gives quick but far from optimal solutions. It
quickly finds a local minimum, but it is unable to broaden the search to
find another local minimum. However, 2-opt algorithm is superior to
Greedy algorithm, the quality of the solution, with the similar running
times from 0.2 to 2.5 seconds, is on average about 8% worse than optimal.

 The fourth column in the Table 1 corresponds to the pure Genetic
Algorithm. The running time, as expected, is significantly increased. While
our GGA algorithm reached optimal solution below one second or few se-
conds (0.6 to 17.1 seconds), the running time for pure genetic algorithm
was from 3.4 seconds to 100 seconds which was time-limit. In 12 out of 20
cases no optimal solution was found within that time limit, but in 8 cases
an optimal solution was found and the middle column indicates in which
generation that happened. For 12 cases where optimal solution was not
found, the quality of found solution is expressed as for previous cases in
percents above the optimal solution.
 The fifth column in Table 1 describes results obtained by our grafted
algorithm, which is programmed with edge map crossover as recombina-
tion operator (GGAemc). In 17 out of 20 considered cases an optimal solu-
tion was found. Remaining three instances differ from optimal solution in
0.01, 0.18 and 0.22 percent. The solutions were found in relatively few
generations and very fast. Execution times were 0.6 to 17.1 seconds.

The sixth column in Table 1 corresponds to our grafted genetic algo-
rithm which contains a distance preserving crossover as recombination op-
erator (GGAdpc). In 11 out of 20 considered cases an optimal solution was
found. In remained 9 cases, delivered solutions differ from optimal in
range from 0.13 to 0.32 percent. The running time and number of genera-
tions of GGAdpc, in comparison with GGAemc, are slightly lesser, partic-
ularly in the lowermost part of the table which represents more complex
instances. The difference in the quality on the other side is in the hand of
GGAemc for the same considered cases.

Table 1. Five techniques for solving Euclidean TSP

Name Greedy 2-opt GAemc GAdpc GGAemc GGAdpc Concorde
 quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time

burma14 8.32% 5.71% 0% 74 3.4 0% 81 3.5 0% 7 0.6 0% 6 0.5 3323 0.1
ulysses16 10.42% 7.15% 0% 136 4.1 0% 125 4.4 0% 9 0.7 0% 9 0.7 6859 0.2
ulysses22 12.54% 7.87% 0% 1267 14.7 0% 1328 16.4 0% 8 0.6 0% 8 0.7 7013 0.2
bayg29 13.37% 6.38% 0% 1345 19.4 0% 1137 17.6 0% 13 1.3 0% 14 1.4 1610 0.3
bays29 12.87% 5.37% 0% 2185 29.2 0% 2643 34.1 0% 12 1.2 0% 12 1.2 2020 0.3
dantzig42 14.06% 7.11% 0% 4704 79.8 0% 4232 74.6 0% 10 1.3 0% 9 1.3 699 0.5
att48 13.98% 8.47% 0% 4807 85.2 0% 5213 91.3 0% 22 2.2 0% 23 2.3 33522 0.6
eil51 15.24% 7.67% 4.21% 5482 100.0+ 5.23% 5489 100.0+ 0% 33 6 0% 30 6.1 426 0.3
berlin52 14.82% 7.45% 0% 2037 33.7 4.92% 5021 100.0+ 0% 15 1.7 0% 15 1.7 7542 0.4
st70 13.17% 7.84% 5.12% 5259 100.0+ 5.72% 5198 100.0+ 0% 20 5.1 0% 19 5.1 675 0.5
eil76 14.47% 8.15% 6.56% 5347 100.0+ 7.24% 5298 100.0+ 0% 53 9.1 0.19% 49 9.1 538 1.3
pr76 13.96% 9.95% 4.18% 5218 100.0+ 5.36% 5191 100.0+ 0% 42 7.4 0% 43 7.4 108159 1.2
gr96 16.32% 7.14% 4.98% 5191 100.0+ 5.71% 5090 100.0+ 0% 73 12 0.13% 73 12 55209 1.6
rat99 14.79% 7.41% 5.31% 5114 100.0+ 7.12% 5011 100.0+ 0% 74 13 0.17% 70 13 1211 1.7
kroA100 12.37% 8.07% 5.12% 5072 100.0+ 6.58% 4971 100.0+ 0% 24 12 0.18% 22 12 21282 1.7
kroB100 16.58% 7.19% 6.14% 5041 100.0+ 5.92% 4816 100.0+ 0% 39 13 0.21% 36 13 22141 1.7
kroC100 10.47% 11.19% 4.87% 5121 100.0+ 6.78% 4923 100.0+ 0.18% 34 13 0.19% 28 13 20749 1.8
kroD100 14.81% 7.74% 5.07% 4976 100.0+ 8.12% 4951 100.0+ 0% 31 13 0.29% 25 13 21294 1.5
lin105 16.60% 9.85% 6.72% 4756 100.0+ 6.51% 4803 100.0+ 0.01% 26 9.9 0.17% 25 9.7 14379 1.3
ch150 19.62% 11.72% 7.22% 4512 100.0+ 8.77% 4460 100.0+ 0.22% 88 17 0.32% 82 17 6528 7

1.5 Conclusions

The goal of this paper was to investigate the impact of grafting a 2-opt
based local searcher into the standard genetic algorithm, GGAemc and
GGAdpc, for solving the Travelling Salesman Problem with Euclidean dis-
tance. It is known that genetic algorithms are very successful when imple-
mented for many NP-hard problems. However, they are much more effec-
tive if some specific knowledge about particular problem is utilized. The
TSP is well researched problem with many such improvements, especially
when the restricted version of the problem with Euclidean distance is con-
sidered. In that controlled environment we compared two direct tech-
niques, a genetic algorithm and a 2-opt algorithm with our grafted genetic
algorithms. Exact solution from Concorde and lower bound on quality,
Greedy algorithm were added for better comparison. Quantitative results
on test cases from TSPLIB show that grafted algorithms have new quality.
Even when both components have serious drawbacks, their grafted combi-
nations exhibits excellent behaviour. Further calibration of this system will
include measuring the optimal blend of two components for larger test cas-
es. The future research will focus on a new heuristic algorithm for making
an initial tour of Lin-Kernighan heuristic, which is known to be one of the
most successful heuristics for the TSP.

References

1. D. Applegate, R. Bixby, V. Chvatal, and W. Cook: Finding tours in the
 TSP. Technical Report 99885 (Research Institute for Discrete Mathematics,
 University of Bonn, 1999).
2. M. Djordjevic: Influence of grafting a hybrid searcher into the
 evolutionary algorithm. In B. Zajc and A. Trost (eds.): Proceedings of
 International Electrotechnical and Computer Science Conference, 17 (IEEE,
 Ljubljana, 2008), 115-118.
3. M. Djordjevic: Impact of grafting a 2-opt algorithm based local searcher into
 the genetic algorithm. In N. E. Mastorakis, M. Demiralp, V. Mladenov and Z.
 Bojkovic (eds.) : Recent Advances In Applied Informatics And
 Communications (Wseas press, Moscow, 2009), 485-490.
4. C. Engels, B. Manthey: Average-case approximation ratio of the 2-opt
 algorithm for the TSP. Operations Research Letters, 37 (2009), 83-84.

Quantitative Analysis of Separate and Combined Performance of Local Searcher
and Genetic Algorithm 11

5. B. Freisleben, P. Merz: New Genetic Local Search Operators for the
 Traveling Salesman Problem. In H. Voigt, W. Ebeling, I. Rechenberg and H.
 Schwefel (eds.): Parallel Solving from Nature – PPSN IV (Springer-Verlag,
 Berlin, 1996), 890-899.
6 M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to
 the Theory of NP-Completeness (W. H. Freeman, New York, 1979).
7. K. Helsgaun: An effective implementation of the Lin-Kernighan travel
 salesman heuristic. In R. Slowinski, J. Artalejo, J. Billaut, R. Dyson and L.
 Peccati (eds.): European Journal of Operational Research, 126 (Elsevier,
 Amsterdam, 2000), 106- 130.
8. J. H. Holland: Adaptation in natural and artificial system (MIT Press, Cam
 bridge, 1992).
9. H. Hoos and T. Stützle: Stochastic Local Search, Chapter 8
 (TSP) (Morgan Kaufmann Publishers, San Francisko, 2004).
10. D. S. Johnson, L. A. McGeoch: The travelling salesman problem: A case
 study in local optimization. In E. H. L. Aarts and J. K. Lenstra (eds.):
 Local Search in Combinatorial Optimization (John Wiley & Sons, New
 York, 1997), 215–310.
11. D. S. Johnson, L. A. McGeoch: Experimental analysis of heuristics for the
 STSP. In G. Gutin and A. Punnen (eds.): The Traveling Salesman Problem
 And Its Variations (Kluwer Academic Publishers, Boston, 2002), 369–443.
12. B. Julstrom: Comparing Darwian, Baldwian, and Lamarckian search in
 a genetic algorithm for the 4-cycle problem. . In L. D. Whitley and D. E.
 Golberg (eds.): Proceedings of the Genetic and Evolutionary Computation
 Conference, (Morgan Kaufmann, Orlando, 1999), 134-138.
13. N. Krasnogor and J.Smith: A memetic algorithm with self-adaptive local
 search: TSP as a case study. In L. D. Whitley and D. E. Golberg (eds.):
 Proceedings of the Genetic and Evolutionary Computation Conference
 (Morgan Kaufmann, Vegas, 2000), 987-994.
14. P. Merz and B. Freisleben: Memetic algorithms for the traveling
 salesman problem. In S. Wolfram and T. Rowland (eds.): Complex Systems
 13, (Complex Systems Publications, Champaigne, 2001), 297–345.
15. G. M. Morris, D. S Goodsell, R. S. Halliday, W. E. Hart, R. K. Belew, and
 A. J. Olson (1998) Automated docking using a Lamarckian genetic
 algorithm and an empirical binding free energy function. In C. L. Brooks
 III, G. Frenking, S. Sakaki and P. R. Schreiner (eds.): Journal of
 Computational Chemistry, 19 (Wiley, New York, 1998), 1639-1662.
16. P. Moscato: On evolution, search, optimization, genetic algorithms and
 martial arts: towards memetic algorithms (California Institute of
 Technology, Pasadena, 1989).
17. T. Yamada and C. Reeves: Solving the Csum permutation flowshop
 scheduling problem by genetic local search. International Conference on
 Evolutionary Computation-WCCI98, (1998), 230-234.

