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Abstract. The paper analyzes separate, combined and partial perfor-
mance of local searcher and genetic algorithm. On the well studied Eu-
clidean Travelling Salesman Problem we examine the impact of grafting
a 2-opt heuristic based local searcher into the genetic algorithm for solv-
ing the Euclidean Travelling Salesman Problem. Genetic algorithm pro-
vides a diversification, while 2-opt improves intensification. Results on
examples from TSPLIB show that this method combines good qualities
from both methods applied and significantly outperforms each individual
method. The experiment extension demonstrate a third generation test-
ing on hybrid genetic algorithms where an influence of partial grafting a
2-opt local searcher into genetic algorithm was tested.

1 Introduction

Genetic Algorithms (GA) use some mechanisms inspired by biological
evolution [9]. They are applied on a finite set of individuals called pop-
ulation. Each individual in a population represents one of the feasible
solutions of the search space. Mapping between genetic codes and the
search space is called encoding and can be binary or over some alpha-
bet of higher cardinality. Good choice of encoding is a basic condition
for successful application of a genetic algorithm. Each individual in the
population is assigned a value called fitness. Fitness represents a relative
indicator of quality of an individual compared to other individuals in
the population. Selection operator chooses individuals from the current
population and takes the ones that are transferred to the next genera-
tion. Thereby, individuals with better fitness are more likely to survive in
the population‘s next generation. The recombination operator combines
parts of genetic code of the individuals (parents) into codes of new indi-
viduals (offsprings). The components of the genetic algorithm software
system are: Genotype, Fitness function, Recombinator, Selector, Mater,
Replacer, Terminator, and in our system a Local searcher which is new
extended component. In this paper we study a well defined problem of a
Traveling Salesman Problem (TSP). In the TSP a set {C1, C2, ...CN} of
cities is considered and for each pair {Ci, Cj} of distinct cities a distance
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d(Ci, Cj) is given. The goal is to find an ordering π of the cities that
minimizes the quantity

N−1∑

i=1

d(Cπ(i), Cπ(i+1)) + d(Cπ(N), Cπ(1)). (1)

This quantity is referred to as the tour length since it is the length of the
tour a salesman would make when visiting the cities in the order specified
by the permutation, returning at the end to the initial city. We will
concentrate in this paper on the symmetric TSP in which the distances
satisfy d(Ci, Cj) = d(Cj , Ci) for 1 ≤ i, j ≤ N and more specificaly to
the Euclidean distance. While the TSP is known to be NP-hard [7] even
under substantial restrictions, the case with Euclidean distance is well
researched and there are many excellent algorithms which perform well
even on very large cases [7].
The 2-opt is a simple local search algorithm for the TSP. The main idea
behind it is to take a route that crosses itself and reorder it so that it
does not cross itself any more. The 2-opt local search will be used to
hybridize GA metaheuristic to solve TSP. Although the 2-opt algorithm
[5] performs well and can be applied to Traveling Salesman Problems
with many cities, it finds only a local minimum. The nearest neighbour
algorithm [10] is one of the most intuitive heuristic algorithms for the
TSP. It’s a greedy method for solving the TSP. The genetic algorithm
considered in this paper are hybrid genetic algorithms, incorporating
local search which have been referred to as Memetic Algorithms (MA)
[11]. One example of hybridisation of genetic algorithms is shown in [12]

2 Grafted GA for the TSP

Grafting in botanic is when the tissues of one plant are affixed to the
tissues of another. Grafting can reduce the time to flowering and shorten
the breeding program. Local Searcher is an extension of the conventional
genetic algorithm as it does not need to make use of genetic components.
It facilitates the optimization of individual genomes outside the evolution
process. There are many implementations of local searchers [6], some even
in hardware [10].
In our algorithm, the pseudocode can be seen in Algorithm 1, after
the recombination has been applied (line 7 in the pseudocode), a Local
Searcher is used to optimize every single offspring genome (line 8 in the
pseudocode). Because of the usage of such external optimizer the genetic
algorithm is no longer pure and therefore we speak of a grafted genetic
algorithm [2, 3]. This form of optimization is of a local kind. It alters
the genome by heuristically changing the solution. Edge map crossover
[6] is an implementation of the recombination operator (line 7 in the
Algorithm 1). It makes use of a so called edge map. Distance preserving
crossover [8] is another implementation of the recombination operator
(line 7 in the Algorithm 1). It attempts to create a new tour with the
same distance to both parents. The local learcher is an extension to the
conventional genetic algorithm as it needs not make use of genetic op-
erators. It facilitates the optimization of individual genomes outside the
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evolution process. The Local Searcher has no further knowledge on the
execution of the genetic algorithm in the larger setting. The system will
provide it with the genome it needs to locally optimize when needed.

Algorithm 1 Pseudocode

1: t = 0
2: initialize (P (t))
3: evaluate (P (t))
4: while not terminate (P (t)) do
5: sel = select (P (t))
6: mat = mate (sel)
7: rec = for each mated collection m ∈ mat do recombination(r)
8: loc = for each genome g in each recombined collection r ∈ rec do local search
9: rep = replace(loc, P (t))
10: P (t+ 1) = select(rep)
11: evaluate (P (t+ 1))
12: t = t+ 1
13: end while

The 2-opt local searcher is a local optimizer for the TSP that has been
grafted into the standard genetic algorithm (line 8 in the Algorithm 1).
This local optimizer performs the 2-opt heuristic that exchanges edges to
reduce the length of a tour. An exchange step consists of removing two
edges from the current tour and reconnecting the resulting two paths in
the best possible way Fig. 1.

Following experiments demonstrate a third generation testing on hybrid
genetic algorithms. In the extension of an experiment an influence of
partial grafting a 2-opt local searcher into genetic algorithm was tested.
In the conducted experiments we will present an influence of grafting GA
with local search and we will perform a performance analysis of partial
use of local optimisation operator on GA for TSP. Furthermore, we will
answer the questions of how often to graft a GA and when.

Fig. 1. Exchange step of 2-opt algorithm
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3 Experiment

Table 1. Five techniques for solving Euclidean TSP

Name Greedy 2-opt

quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time

burma14 8.32% 5.71% 0% 74 3.4 0% 81 3.5 0% 7 0.6 0% 6 0.5 3323 0.1

ulysses16 10.42% 7.15% 0% 136 4.1 0% 125 4.4 0% 9 0.7 0% 9 0.7 6859 0.2

ulysses22 12.54% 7.87% 0% 1267 14.7 0% 1328 16.4 0% 8 0.6 0% 8 0.7 7013 0.2

bayg29 13.37% 6.38% 0% 1345 19.4 0% 1137 17.6 0% 13 1.3 0% 14 1.4 1610 0.3

bays29 12.87% 5.37% 0% 2185 29.2 0% 2643 34.1 0% 12 1.2 0% 12 1.2 2020 0.3

dantzig42 14.06% 7.11% 0% 4704 79.8 0% 4232 74.6 0% 10 1.3 0% 9 1.3 699 0.5

att48 13.98% 8.47% 0% 4807 85.2 0% 5213 91.3 0% 22 2.2 0% 23 2.3 33522 0.6

eil51 15.24% 7.67% 4.21% 5482 100.0+ 5.23% 5489 100.0+ 0% 33 3.9 0% 30 3.8 426 0.3

berlin52 14.82% 7.45% 0% 2037 33.7 4.92% 5021 100.0+ 0% 15 1.7 0% 15 1.7 7542 0.4

st70 13.17% 7.84% 5.12% 5259 100.0+ 5.72% 5198 100.0+ 0% 20 4.1 0% 19 4.1 675 0.5

eil76 14.47% 8.15% 6.56% 5347 100.0+ 7.24% 5298 100.0+ 0% 53 4.5 0.19% 49 4.4 538 1.3

pr76 13.96% 9.95% 4.18% 5218 100.0+ 5.36% 5191 100.0+ 0% 42 4.1 0% 43 4.2 108159 1.2

gr96 16.32% 7.14% 4.98% 5191 100.0+ 5.71% 5090 100.0+ 0% 73 8.4 0.13% 73 8.4 55209 1.6

rat99 14.79% 7.41% 5.31% 5114 100.0+ 7.12% 5011 100.0+ 0% 74 11.9 0.17% 70 11.7 1211 1.7

kroA100 12.37% 8.07% 5.12% 5072 100.0+ 6.58% 4971 100.0+ 0% 24 3.6 0.18% 22 3.5 21282 1.7

kroB100 16.58% 7.19% 6.14% 5041 100.0+ 5.92% 4816 100.0+ 0% 39 5.8 0.21% 36 5.7 22141 1.7

kroC100 10.47% 11.19% 4.87% 5121 100.0+ 6.78% 4923 100.0+ 0.10% 34 5.3 0.19% 28 5.1 20749 1.8

kroD100 14.81% 7.74% 5.07% 4976 100.0+ 8.12% 4951 100.0+ 0% 31 5.6 0.29% 25 5.3 21294 1.5

lin105 16.60% 9.85% 6.72% 4756 100.0+ 6.51% 4803 100.0+ 0.01% 26 4.6 0.17% 25 4.6 14379 1.3

ch150 19.62% 11.72% 7.22% 4512 100.0+ 8.77% 4460 100.0+ 0.22% 88 15.2 0.32% 86 15.1 6528 7

GAemc GAdpc GGAemc GGAdpc Concorde

For testing our strategy and comparing it to other solutions we used
the instances of symmetric traveling salesman problem which can be
found on TSPLIB. We deliberately used well known problem (TSP) and
relatively small instances for which best solutions are known since the
goal of this research is not to find a better algorithm for the symmetric
TSP, but rather to compare on a controlled environment the impact of
grafting a genetic algorithm. Altogether 20 instances have been tried out,
with different complexity and range from 14 to 150 cities per instance,
look in Table 1. We compared our method (grafted genetic algorithm
(GGA)), separately in one case with edge map crossover (GGAemc) and
in another case with a distance preserving crossover (GGAdpc) with
four other methods. As the upper bound for the quality of solution we
used the above mentioned Greedy Heuristic. For the lower bound for the
quality of solution we used exact solutions, global minima, obtained by
Concorde [1]. Then we compared our grafted method with a pure 2-opt
algorithm and pure genetic algorithm. For Greedy Heuristic and the pure
2-opt Heuristic the running time is in a range from 0.5 to 1.5 seconds.
In experiment extension a local searcher is periodically implemented with
10, 20, 30, 40, 50, 60, 70, 80 and 90% frequency. In all cases three different
independent distributions of generations with local searcher were used:
random, beginning sequence and ending sequence. Random variations
means that use of local searcher is with adequate probability distributed
in iterations of the algorithm. Begin sequence means that a sequence of
iterations with local searcher is used in the first generations of an al-
gorithm. While in the ending it is used on the last generations of the
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algorithm. The total number of iterations are limited to the number of
iterations reached in grafted genetic algorithm with edge map recombi-
nation (GGAemc). The extension of an experiment include testing on a
10 largest instances from the Table 1 plus instance pr439. The results
presents average values of 5 runs for each tested method.
All experiments were conducted on a computer with Pentium(R) 2.8 GHz
CPU, with Windows 7. Furthemore, a development environment the EA

Visualizer [4], an application written in Java programming language,
was used. The Concorde’s code is written in the AnsiC programming
language. Therefore, in this research absolute times were not of crucial
importance, we were only interested in relative performance of tested
algorithms.

4 Results

The results of an experiment are summarized in Table 1. Twenty cases
from the well known TSPLIB were used for testing. The names of these
cases are in the first column and the name always contains the size of
the problem, i.e. the number of cities (which are between 14 and 150).
The last two columns are exact solutions (global minima) obtained by
Concorde [1], together with execution times. A well known problem with
moderate sized examples and tools to get optimal solutions were se-
lected, recall that a goal of this research is not to improve solutions for
difficult problems but to compare and quantitatively examine the effects
of grafting local searches (in this case 2-opt based) to standard genetic al-
gorithm. Such knowledge can be used to fine tune and calibrate a hybrid
system which can then be used on large cases. These last two columns
are used as a reference for all other tests. The second column in Table 1
represents lower bound for the quality of solution. It is a simple nearest
neighbour heuristic. It is fast, but very unsophisticated and any reason-
able algorithm should do better than that. This greedy heuristic gives
results that are about 15 % (except for some very small cases) worse than
the optimal solution. The column titled quality shows by how many per-
cent is the solution produced by this algorithm worse than the optimal
solution. 0 % in this column means algorithm found the best solution.
The running times of the algorithm are from 0.2 to 2.3 in seconds. The
third column in the Table 1 corresponds to the pure 2-opt algorithm. As
expected, it also gives quick but far from optimal solutions. It quickly
finds a local minimum, but it is unable to broaden the search to find
another local minimum. However, 2-opt algorithm is superior to greedy
algorithm, the quality of the solution, with the similar running times
from 0.2 to 2.5 seconds, is on average about 8 % worse than optimal.
The fourth column in the Table 1 corresponds to the pure Genetic Algo-
rithm. The running time, as expected, is significantly increased. While
our GGA algorithm reached optimal solution below one second or few
seconds (0.6 to 15.3 seconds), the running time for pure genetic algorithm
was from 3.4 seconds to 100 seconds which was time-limit. In 12 out of 20
cases no optimal solution was found within that time limit, but in 8 cases
an optimal solution was found and the middle column indicates in which
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generation that happened. For 12 cases where optimal solution was not
found, the quality of found solution is expressed as for previous cases in
percents above the optimal solution. The sixth column in Table 1 de-
scribes results obtained by our grafted algorithm, which is programmed
with edge map crossover as recombination operator (GGAemc). In 17 out
of 20 considered cases an optimal solution was found. Remaining three
instances differ from optimal solution in 0.01, 0.10 and 0.22 percent. The
solutions were found in relatively few generations and very fast. Exe-
cution times were 0.6 to 15.2 seconds. The seventh column in Table 1
corresponds to our grafted genetic algorithm which contains a distance
preserving crossover as recombination operator (GGAdpc). In 11 out of
20 considered cases an optimal solution was found. In remained 9 cases,
delivered solutions differ from optimal in range from 0.13 to 0.32 percent.
The running time and number of generations of GGAdpc, in comparison
with GGAemc, are slightly lesser, particularly in the lowermost part of
the table which represents more complex instances. Quantitative results
on test cases from TSPLIB show that grafted algorithms, GGAemc and
GGAdpc, have advantages. Even when their’s components have serious
drawbacks, their grafted combinations exhibits a very good behaviour.
Results on examples from TSPLIB show that this grafted method com-
bines good qualities from both methods applied and significantly outper-
forms each individual method.
The results of experiment extension are summarized in Table 2 and in
Figures 2, 3 and 4.
The first column in Table 2 corresponds to the names of instances and
the size of the problem (which are between 76 and 439) which are du-
plicated for better visualization of the table. The second column in the
Table 2 presents the result of the pure Genetic Algorithm and grafted
Genetic Algorithm, both with edge map crossover as recombination op-
erator (GAemc and GGAemc). This algorithms contain 0% and 100%
frequency of local search, respectively. The q in Table 2 stands for quality
differ from optimal solution. The t stands for running time. The third
column in Table 2 represents results for 10% and 90% frequency. The
subcolumn titles rnd, begin, end stands for three variations of partial
hybridization, random, begin sequence and end sequence, respectively.
The result for 10% frequency shows that this kind of algorithm settings
is fast (the time vary from 0.9 seconds to 11.0 seconds), but the qual-
ity of solution (which vary from 0.34% to 4.92%), are weak. The best
performance of all tested cases was achieved in the configuration with
90% frequency, especially in variation with end sequence, with results
coloured in red. In 9 out of 11 tested instances the results was the same
as for GGAemc. For instance (kroB100) result was better in 0.01%, and
for instance pr439 a result is worse in 0.04%. Furthermore, the solu-
tions provided by, 90% end sequnce variations, were found faster then
by GGAemc. The running time vary from 3.3 to 78.9 seconds, compared
to the time achieved by GGAemc, which vary from 3.6 to 91.8 seconds.
This mean, that the same quality of result was achieved in shorter time.
The results for instance pr439 can be seen in Figure 2. In 95% of all tested
cases, (look in columns from 3 to 7 in Table 2) the best performance was
achieved in variation with end sequence. Additionally, the results of end
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sequence for all instances can be seen in Figure 4. In all three variations
of hybridization (random, begin and end) the running time is the same
for particular frequency. For all tested instances the running time grows
almost linerly with regard to percent of hybridization, see Figure 3.
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Fig. 2. Results for pr439
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Fig. 3. Running times

5 Conclusions

The goal of this paper was to investigate influence of grafting a 2-opt
based local searcher into the standard genetic algorithm, for solving the
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Table 2. Partial Grafting of a Genetic Algorithm
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Fig. 4. Results for end sequence

Travelling Salesman Problem with Euclidean distance. It is known that
genetic algorithms are very successful when implemented for many NP-
hard problems. However, they are much more effective if some specific
knowledge about particular problem is utilized. In our first experiment
we compared two direct techniques, with our grafted genetic algorithms.
Solutions from Concorde and greedy algorithm were added for better
comparison. Quantitative results on test cases from TSPLIB show that
grafted algorithms have advantages. Even when both components have
serious drawbacks, their grafted combinations exhibits a very good be-
haviour. Results on examples from TSPLIB show that this method com-
bines good qualities from both methods applied and significantly outper-
forms each individual method.

In the second part of an experiment an influence of partial grafting a
2-opt local searcher into genetic algorithm was studied. The best perfor-

mance was achieved in a configuration with 90% frequency with end se-
quence. In a comparison with a performance of GGAemc the same quality

of results was achieved in a shorter time, on average a 7% of running time
was spared. The cases with 10% frequency use of local search provides
fast and far from optimal solutions but still better then the GAemc, with
small increase in time. The configurations with 50% frequency use of lo-
cal searcher present a good examples of trade-off between a running time
and quality, especcialy in setting with ending sequence of local searcher.
From the results obtained in Table 2, we can conclude that the best gain
is attained when a local searcher is used in an ending sequence of the
algorithm and in frequency not less then 50% and not more than 90%.
There are several issues for future research, such as investigating the ef-
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fects of a different use of the local optimisation and other metaheuristic
algorithms, analyzing the individual performance gains provided by the
local search, and to look at how to scale up the algorithm for solving
large instances of TSP.
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