
The Traveling Visitor Problem and Algorithms for
Solving it
Milan Djordjevic1, Marko Grgurovic1, and Andrej Brodnik2

1 University of Primorska, Department of Information Science and Technology,
Koper, Slovenia, milan.djordjevic, marko.grgurovic@student.upr.si

2 University of Primorska, Department of Information Science and Technology,
Koper, Slovenia and University of Ljubljana, Faculty of Computer and
Information Science, Ljubljana, Slovenia, andrej.brodnik@upr.si

Abstract
We consider new problem named the Traveling Visitor Problem (TVP). Visitors start from a
hotel with desire to visit all interesting sites in a city exactly once and to come back to the hotel.
Since, the visitors use streets and pedestrian zones, the goal is to minimize the visitor’s traveling.
A new problem is similar to the Traveling Salesman Problem (TSP) with a difference that the
traveling visitors, during its visit of sites, can’t fly over buildings in the city, instead visitors have
to go around these obstacles. That means that all Euclidean distances, like those in Euclidean
TSP, are impossible in this case. The tested benchmarks are combined from three real instances
made using tourist maps of cities of Venice, Belgrade and Koper and two instances of modified
cases from TSPLIB. We introduced and compared two exact methods for solving the TVP. In
all tested cases the Koper Algorithm significantly outperforms the Naïve Algorithm for solving
the TVP - the difference in quality of solutions differs from 6.52% to 354.46%.

1998 ACM Subject Classification "G.1.6 Optimization, G.2.2 Graph Theory"

Keywords and phrases Traveling Salesman Problem, Traveling Visitor Problem, Floyd-Warshall
Algorithm, Koper Algorithm for TVP, Naïve Algorithm for TVP

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

In the Traveling Salesman Problem (TSP) a set {C1, C2, ...CN } of cities is considered and
for each pair (Ci, Cj) where i �= j, a distance d(Ci, Cj) is given. The goal is to find a
permutation π of the cities that minimizes the quantity

N−1∑

i=1
d(Cπ(i), Cπ(i+1)) + d(Cπ(N), Cπ(1)). (1)

This quantity is referred to as the tour length since it is the length of the tour a salesman
would make when visiting the cities in the order specified by the permutation π, returning at
the end to the initial city. We will concentrate in this paper on the symmetric TSP (STSP)
in which the distances satisfy d(Ci, Cj) = d(Cj , Ci) for 1 ≤ i, j ≤ N . While the TSP is
known to be NP-hard [12] even under substantial restrictions. The case with symmetric
distances is well researched and there are many algorithms which perform well even on large
cases [1, 3]. In the literature [10, 11] the Traveling Salesman Problem is usually represented
and considered as a graph theoretical problem.

© Milan Djordjevic;
licensed under Creative Commons License NC-ND

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 The Traveling Visitor Problem and Algorithms for Solving it

An instance of the STSP can be seen as a complete graph G = (V, E) where the set of
vertices V is given by the cities and edges between each city in the graph with corresponding
edge weights d(Ci, Cj). The STSP then translates to the problem of finding a Hamiltonian
Tour of minimal length in the graph G.

Applications of the TSP and its variations go way beyond the route planning problem
of a traveling salesman and span over several areas of knowledge including mathematics,
computer science, operations research, genetics, engineering, and electronics. In addition,
there are many different variations of TSP which are described and explored in the literature
and also variations derived from everyday life. Some of them are: Machine Scheduling
Problems [4, 10], The time dependent TSP [9], The delivery man problem which is also
known as the minimum latency problem and the traveling repairman problem, for details on
this problems, we refer to [5, 8] respectively.

Traveling Tourist Problem [13] is a problem in which a tourist wishes to see all monuments
(nodes) in a city, and so must visit each monument or a neighbour thereof (it is assumed
that a monument is visible from any of its neighbours) the edges therefore represent lines
of sight). The resulting walk will therefore visit a subset of all nodes in the graph. The
Traveling Tourist Problem shares a similar name with our problem but is otherwise a very
different problem.

The STSP can be solved using the grafted genetic algorithms (GGA) as was shown
in [7]. The currently most efficient implementation of the branch-and-cut method which
was introduced by Padberg and Rinaldi [14] for solving the symmetric case of Traveling
Salesman Problem is Concorde [2]. Concorde’s TSP solver has been used to obtain the
optimal solutions to the full set of 110 TSPLIB instances, the largest having 85,900 cities.

Finally, in a graph G we can find besides shortest closed walk also the shortest path
between any pair of vertices. This problem is in the literature known as all-pairs shortest
path problem [6]. It aims to compute the shortest path from each vertex u to every other
vertex v. The Floyd-Warshall algorithm [6] is an efficient algorithm to find all-pairs shortest
paths on a graph G.

2 Traveling Visitor Problem

Visitors have arrived in a hotel in some new town, with a desire to visit all interesting sites
in a city exactly once and to come back to the hotel. Visitors in generally use their feet for
traveling through the city, for which they use streets, walking trails and pedestrian zones.
The goal is to minimize the visitors traveling.

The Traveling Visitor Problem is a version of the Traveling Salesman Problem with a
difference that the traveling visitor, during its visit of sites, can not fly over the buildings in
the city, instead visitors must go around these obstacles. This difference is demonstrate in
the Figure 1. This means that the Euclidean distances, as we know them in the Euclidean
TSP, are in this case impossible (direct edge from i to j in Figure 1). Visitors use the walking
paths and pedestrian zones of variable length. These limits determine the weight of edges
connecting the vertices in the graph.

The Traveling Visitor Problem is stated as: given a connected, weighted graph G =
(V, E, c), with a set of vertices V = S ∪ X and S ∩ X = ∅, S belongs to interesting sites in
the city (vertices i and j in Figure 1), X belongs to crossroads in the city (vertices k and
m in Figure 1), a set of edges E, and a cost of traveling c. The goal is to find the shortest
closed walk through all vertices from S, according to c in graph G, although we may travel
through vertices from X .

M. Djordjevic et al. 3

The concepts we summarised above can be modified easily to take the directions of the
edges into account. The asymmetric traveling visitor problem (ATVP) is then similar to the
symmetric TVP above, i. e. it is the problem of finding a closed walk of minimal length in
a weighted graph. The Euclidean TVP, or planar TVP, is the TVP with the distance being
the ordinary Euclidean distance. The Euclidean TVP is then a particular case of the metric
TVP, since distances in a plane obey the Euclidian triangle inequality.

This problem, by the knowledge of the authors, has no references in publications due
date of writing it.

3 Algorithms for solving TVP

First thinking about possible solution for Traveling Visitor problem is motivated by the
intuitive thinking of a tourist when the concerned get in possession of a tourist map. That
is: visit the first place from the map, then second one, then nth, until all sites from the
map are visited and then come back to the starting site. The results of this method depend
directly on the order in which the interesting sites are listed on the map. Furthermore, this
intuitive method does not contain any scientific value.

First proposed method for solving the Traveling Visitor Problem is the Naïve algorithm,
shown in Listing 1. In the first line of pseudocode we can distinguish next parameters: S

belongs to interesting sites in the city, X belongs to crossroads in the city, a set of edges E,
and W represents the distance matrix of the graph G, (S ∪ X × S ∪ X). In the first step of
an algorithm the Traveling Visitor Problem is solved as an instance of Traveling Salesman
Problem. In next, from the distance matrix W we produce a distance matrix Z (S × S),
which is the solution of all-pairs shortest path problem (APSP). Finally, in the loop block
(lines 6 through 8) the solution for TVP is given by applaying the shortest paths from Z

into T .

Listing 1 Naïve Algorithm
1 procedure Naive(S,X,E,W)
2 T ← T SP (W)
3 Z ← S × S

4 Z ← AP SP (S ∪ X, E, W)
5 cost← 0
6 for all (i, j) ∈ T : do
7 cost←cost +Zij

k

ij

m

Figure 1 TSP and TVP, Two rectangles represent buildings (obstacles) in the city. Red nodes
represent interesting sites in the city (vertices from set S), black nodes represent crossroads in the
city (vertices from set X), the red line represent the euclidean distance between two interesting
sites (this is the case in TSP), black lines represent the connection between two interesting sites,
going through two crossroads (this is the case in TVP)

4 The Traveling Visitor Problem and Algorithms for Solving it

8 end for
9 end procedure

The second proposed method for solving the Traveling Visitor Problem is the Koper
Algorithm, shown in Listing 2. The first line of pseudocode contains the same parameters as
Naïve algorithm. In the first step we find the all pairs shortest paths in our graph G. As an
input a distance matrix W is used and as the output a distance matrix Z is obtained. In the
next step we solve the Traveling Salesman Problem on the distance matrix Z. Furthermore,
we get the solution T , which is a solution for Traveling Visitor Problem.

Listing 2 Koper Algorithm
1 procedure Koper(S,X,E,W)
2 Z ← S × S

3 Z ← AP SP (S ∪ X, E, W)
4 T ← T SP (Z)
5 end procedure

3.1 Adapted Floyd-Warshall algorithm
The problem stated in the Section 1 is of finding the shortest paths between each pair of
vertices u and v, where u, v ∈ S, in the graph G. This can be cast as a run-of-the-mill
all-pairs shortest path problem. Indeed, using the Floyd-Warshall algorithm, we can obtain
a solution in time Θ(|V |3). However, the nature of our problem is somewhat more restrictive:
we are only interested in the shortest paths between S × S, yet we would still like the paths
to go through vertices from the set X if they reduce the overall path length. In contrast,
the Floyd-Warshall algorithm computes a shortest paths between V × V . To this end, we
propose a simple modification which reduces the running time, albeit not asymptotically.
The Floyd-Warshall algorithm is shown in Listing 3, where W is the distance matrix of the
graph G.

Listing 3 Floyd-Warshall
1 procedure Floyd - Warshall (V,W)
2 for all k ∈ V

3 for all i ∈ V

4 for all j ∈ V

5 Wij := min(Wij , Wik + Wkj)
6 end for
7 end for
8 end for
9 end procedure

Let x = |X | and s = |S|. Using these quantities, the number of iterations of the Floyd-
Warshall algorithm can be written as (s + x)3 = s3 + x3 + 3s2x + 3x2s. We offer a different
approach, shown in Listing 4.

M. Djordjevic et al. 5

Figure 2 Each node in the graph represents an arbitrary amount of vertices from a single set
that are arbitrarily interconnected. The edges represent (arbitrarily many) connections to other
such sets. Note, that S′, S′′ ⊂ S and X ′, X ′′ ⊂ X.

S′ X ′

S′′X ′′

Listing 4 Adapted Floyd-Warshall Algorithm
1 procedure Adapted (S,X,W)
2 Floyd - Warshall (X, W)
3 for all k ∈ X

4 for all i ∈ X

5 for all j ∈ S

6 Wij := min(Wij , Wik + Wkj)
7 end for
8 end for
9 end for

10 for all k ∈ X

11 for all i ∈ S

12 for all j ∈ S

13 Wij := min(Wij , Wik + Wkj)
14 end for
15 end for
16 end for
17 Floyd - Warshall (S, W)
18 end procedure

The number of iterations of listing 4 can be plainly seen to equal: s3 + x3 + s2x + x2s.
The best gain, when compared to Floyd-Warshall, is when s = x which amounts to exactly
one half of all iterations of the Floyd-Warshall algorithm. Although it takes fewer iterations,
it also computes fewer shortest paths, since we are only interested in S × S. We will prove
the correctness of Listing 4 by appealing to the graph shown in Figure 2.

In order to examine how Listing 4 works, it is helpful to visualize sets of vertices, as
shown in Figure 2. It should be noted that we will make use of a sparsely connected graph,
which simplifies the analysis. The result does not change for complete graphs, since the
algorithm itself makes no such assumptions.

The first call to Floyd-Warshall (line 2) in Listing 4 finds the all-pairs shortest paths
between the vertices in X , but using only vertices from X on the paths themselves. Note
that there are two such sets shown in Figure 2, i.e. X ′ and X ′′, with no direct edges between
them. Thus, we can only find the shortest paths inside the individual sets. Once the paths
are found, we can find our way from any vertex in X to any vertex in X if a path that does
not take us through vertices in S exists.

The first loop block (lines 3 through 9) of Listing 4 finds every shortest path starting
in X and ending in S, by going through vertices in X only. Every vertex in X knows the
path to every other vertex in X , as long as the path does not go through vertices in S. At

6 The Traveling Visitor Problem and Algorithms for Solving it

this point there must exist a pair of vertices u ∈ X , v ∈ S where Wu,v < ∞ 1. Thus, when
the first loop block finishes, every vertex in X knows the shortest paths through X to some
vertices in S. In Figure 2 this means that the vertices in X ′ know the shortest paths through
X ′ that end in S′ or S′′. The same is true for vertices in X ′′.

Finally, the second loop block (lines 10 through 16) of the algorithm finds every shortest
path starting in some vertex in S, going through some vertex in X and ending in some
vertex in S. The only vertices in S that have paths to vertices in X are those that have
edges that connect them. However, the vertices in X that they are connected to, know the
shortest paths through X ending in some vertices in S. Thus, the algorithm connects the
sets S′ and S′′ via the shortest paths through X ′ and X ′′.

At the end (line 17), we run the Floyd-Warshall algorithm on S. Since the sets S′ and
S′′ have been connected via shortest paths through X , we obtain the APSP solution for
S × S whereby the paths can go through X .

4 Experiment

For testing our strategies, described in Section 3 we used the real instances of the Traveling
Visitor Problem, which were made from official tourist maps of cities of Koper, Belgrade
and Venice. In the Belgrade example two different cases were made and they differed in the
size of the problem, i.e. the number of vertices in the graph. From the publicly available
library, TSPLIB, of sample benchmarks for the TSP and related problems, two instances of
the symmetric traveling salesman problem were taken, modified and tested.

These two instances were modified in such a way that a new graph G′ was made satisfying
the conditions of a connected, weighted graph. Furthermore we split V into a set of vertices
S and set of vertices X , such that |S| = |X | = |V |/2. A vertex degree 5 is arbitrarily
assigned, inspired by the case of real instances, and means that from every vertex from V

there is exactly 5 edges going to the other vertex from V . The 5 edges per vertex were
chosen randomly, according to a uniform probability distribution.

Altogether 5 instances were tried out, with different sizes which range from 120 to 1002
vertices per instance. We compared two methods for solving the traveling visitor problem.
The first method is the Naïve algorithm, shown in Listing 1. The second tested method is the
Koper algorithm, shown in Listing 2. For solving the TSP, as one step in both algorithms,
we used the Concorde Algorithm, presented in Section 1. Furthermore, for solving the APSP,
as a part of both algorithms, we used the Adapted Floyd−Warshall algorithm, which was
presented in Section 3.1.

5 Results

The results of the experiment are summarized in Table 1. Five instances were tried out, with
different sizes, ranging from 120 to 1002 vertices per instance. The names of these cases are
in the first column. The second column contains the size of the problem, i.e. the number
of vertices in set V . The third column in Table 1 corresponds to the number of vertices in
set S and in the top three instances the number of interesting sites from tourist maps. The
fourth column contains names of the two tested methods.

The fifth column corresponds to the length of the tour i.e. the cost of a solution which was
obtained in the experiment. The column is titled Tour Cost and in all six cases the shortest

1 If there were no such pair, a path from S to S going through X would not exist.

M. Djordjevic et al. 7

Table 1 Two techniques for solving the Traveling Visitor Problem

Name (V) (S) Methods Tour Cost Difference

Koper 120 55
Naïve 4738 17.22%
Koper 4042 0.00%

Belgrade
163 53

Naïve 100389 6.52%
Koper 94246 0.00%

250 90
Naïve 122119 8.77%
Koper 112275 0.00%

Venice 210 72
Naïve 26648 24.24%
Koper 21448 0.00%

lin318 318 159
Naïve 921499 249.08%
Koper 263983 0.00%

pr1002 1002 501
Naïve 11818732 354.46%
Koper 2600585 0.00%

tours are obtained by Koper Algorithm. The last column corresponds to the difference in
tested methods displayed in percentages. The first tested method, the Naïve algorithm,
performed poorly in comparison to the Koper algorithm. The quality differs from 6.52% in
the case of Belgrade163 to 354.46% in the case of pr1002 instance.

Although these algorithms are similar, (the difference is whether we first solve the TSP
then APSP, it is the case in Naïve algorithm, or we first solve APSP and then TSP which is
the case in Koper algorithm) the difference in provided solutions between two tested methods
is significant.

6 Conclusions

The goal of this paper was to describe a new problem from graph theory, named the Trav-
eling Visitor Problem. Although the new problem is similar to the Traveling Salesman
Problem, when we try to solve it with the Naïve algorithm we get solutions far from op-
timal. The minimum cost solutions for the Traveling Visitor Problem instances tested in the
paper are provided by Koper algorithm. The tested benchmarks are combined from three
real instances made using tourist maps of cities of Koper, Belgrade and Venice and two in-
stances of modified cases from TSPLIB. In all tested cases the Koper algorithm significantly
outperforms the Naïve algorithm for solving the Traveling Visitor Problem.

References

1 D. Applegate, R. Bixby, V. Chvátal, and B. Cook. Finding cuts in the TSP. Technical
report, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers, 1995.

2 D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform to the
template paradigm. In M. Jünger and D. Naddef, editors, Computational Combinatorial
Optimization, pages 261–304, 2001.

3 D. Applegate, R. Bixby, W. Cook, and V. Chvátal. On the solution of traveling salesman
problems. Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, 1998.

4 M. O. Ball and M. J. Magazine. Sequencing of insertions in printed circuit board assembly.
Operations Research, 36(2):192–201, 1988.

8 The Traveling Visitor Problem and Algorithms for Solving it

5 A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The
minimum latency problem. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 163–171, 1994.

6 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 3rd edition.
The MIT Press. Cambridge, 2009.

7 M. Djordjevic, M. Tuba, and B. Djordjevic. Impact of grafting a 2-opt algorithm based local
searcher into the genetic algorithm. In Proceedings of the 9th WSEAS international confer-
ence on Applied informatics and communications, pages 485–490. Stevens Point, WSEAS,
2009.

8 A. Garcia, P. Jodrá, and J. Tejel. A note on the traveling repairman problem. Networks,
40(1):27–31, 2002.

9 L. Gouveia and S. Vob. A classification of formulations for the (time-dependent) traveling
salesman problem. European Journal of Operational Research, 83(1):69–82, 1995.

10 G. Gutin and A. P. Punnen. The traveling salesman problem and its variations. Kluwer
Academic Publishers, Dordrecht, 2002.

11 D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case study in
local optimization. In Local search in combinatorial optimization, pages 215–310. J. Wiley,
Chichester, 1997.

12 D. S. Johnson and C. H. Papadimitriou. Computational complexity and the traveling sales-
man problem. Massachusetts Institute of Technology, Cambridge, 1981.

13 G. F. Lima, A. S. Martinez, and O. Kinouchi. Deterministic walks in random media.
Physical Review Letters, 87(1):10603, 2001.

14 M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

	Introduction
	Traveling Visitor Problem
	Algorithms for solving TVP
	Adapted Floyd-Warshall algorithm

	Experiment
	Results
	Conclusions

