root / trunk / web / dojo / dojox / math / _base.js @ 12
History | View | Annotate | Download (2.24 KB)
1 |
/*
|
---|---|
2 |
Copyright (c) 2004-2010, The Dojo Foundation All Rights Reserved.
|
3 |
Available via Academic Free License >= 2.1 OR the modified BSD license.
|
4 |
see: http://dojotoolkit.org/license for details
|
5 |
*/
|
6 |
|
7 |
|
8 |
if(!dojo._hasResource["dojox.math._base"]){ |
9 |
dojo._hasResource["dojox.math._base"]=true; |
10 |
dojo.provide("dojox.math._base");
|
11 |
(function(){
|
12 |
var m=dojox.math;
|
13 |
dojo.mixin(dojox.math,{toRadians:function(n){ |
14 |
return (n*Math.PI)/180; |
15 |
},toDegrees:function(n){ |
16 |
return (n*180)/Math.PI; |
17 |
},degreesToRadians:function(n){ |
18 |
return m.toRadians(n);
|
19 |
},radiansToDegrees:function(n){ |
20 |
return m.toDegrees(n);
|
21 |
},_gamma:function(z){ |
22 |
var _1=1; |
23 |
while(--z>=1){ |
24 |
_1*=z; |
25 |
} |
26 |
if(z==0){ |
27 |
return _1;
|
28 |
} |
29 |
if(Math.floor(z)==z){
|
30 |
return NaN; |
31 |
} |
32 |
if(z==-0.5){ |
33 |
return Math.sqrt(Math.PI);
|
34 |
} |
35 |
if(z<-0.5){ |
36 |
return Math.PI/(Math.sin(Math.PI*(z+1))*this._gamma(-z)); |
37 |
} |
38 |
var a=13; |
39 |
var c=[0.000005665805601518633,1.274371766337968,-4.937419909315511,7.872026703248596,-6.676050374943609,3.252529844448517,-0.9185252144102627,0.14474022977730785,-0.011627561382389852,0.0004011798075706662,-0.0000042652458386405745,6.665191329033609e-9,-1.5392547381874824e-13]; |
40 |
var _2=c[0]; |
41 |
for(var k=1;k<a;k++){ |
42 |
_2+=c[k]/(z+k); |
43 |
} |
44 |
return _1*Math.pow(z+a,z+0.5)/Math.exp(z)*_2; |
45 |
},factorial:function(n){ |
46 |
return this._gamma(n+1); |
47 |
},permutations:function(n,k){ |
48 |
if(n==0||k==0){ |
49 |
return 1; |
50 |
} |
51 |
return this.factorial(n)/this.factorial(n-k); |
52 |
},combinations:function(n,r){ |
53 |
if(n==0||r==0){ |
54 |
return 1; |
55 |
} |
56 |
return this.factorial(n)/(this.factorial(n-r)*this.factorial(r)); |
57 |
},bernstein:function(t,n,i){ |
58 |
return this.combinations(n,i)*Math.pow(t,i)*Math.pow(1-t,n-i); |
59 |
},gaussian:function(){ |
60 |
var k=2; |
61 |
do{
|
62 |
var i=2*Math.random()-1; |
63 |
var j=2*Math.random()-1; |
64 |
k=i*i+j*j; |
65 |
}while(k>=1); |
66 |
return i*Math.sqrt((-2*Math.log(k))/k); |
67 |
},range:function(a,b,_3){ |
68 |
if(arguments.length<2){ |
69 |
b=a,a=0;
|
70 |
} |
71 |
var _4=[],s=_3||1,i; |
72 |
if(s>0){ |
73 |
for(i=a;i<b;i+=s){
|
74 |
_4.push(i); |
75 |
} |
76 |
}else{
|
77 |
if(s<0){ |
78 |
for(i=a;i>b;i+=s){
|
79 |
_4.push(i); |
80 |
} |
81 |
}else{
|
82 |
throw new Error("dojox.math.range: step must not be zero."); |
83 |
} |
84 |
} |
85 |
return _4;
|
86 |
},distance:function(a,b){ |
87 |
return Math.sqrt(Math.pow(b[0]-a[0],2)+Math.pow(b[1]-a[1],2)); |
88 |
},midpoint:function(a,b){ |
89 |
if(a.length!=b.length){
|
90 |
console.error("dojox.math.midpoint: Points A and B are not the same dimensionally.",a,b);
|
91 |
} |
92 |
var m=[];
|
93 |
for(var i=0;i<a.length;i++){ |
94 |
m[i]=(a[i]+b[i])/2;
|
95 |
} |
96 |
return m;
|
97 |
}}); |
98 |
})(); |
99 |
} |